File size: 13,218 Bytes
4c64221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
import math
from dataclasses import dataclass
from typing import Optional
# --------------------------
# activation functions
class FNNSwiGLU(nn.Module):
def __init__(self, dim, dim_ff) -> None:
super().__init__()
# we will receive in xW
self.V = nn.Linear(dim, dim_ff, bias=False)
self.W = nn.Linear(dim, dim_ff, bias=False)
def forward(self, x: Tensor) -> Tensor:
""" Compute SwiGLU output of x, the output of the first linear layer. i.e.
FFNSwiGLU(x, W, V, W2) = (Swish1(xW) ⊗ xV )W2.
NOTE: the transformer linear1 layer must be overwritten to identity. This layer only applies
the Swish(xW) * xV. The W2 multiplication is done in the main transformer layer
"""
return F.silu(self.W(x)) * self.V(x)
# ---------------------------------
# padding and position layers
class SinePositionalEmbedding(nn.Module):
def __init__(
self,
dim_model: int,
dropout: float = 0.0,
scale: bool = False,
alpha: bool = False,
):
super().__init__()
self.dim_model = dim_model
self.x_scale = math.sqrt(dim_model) if scale else 1.0
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
self.dropout = torch.nn.Dropout(p=dropout)
self.reverse = False
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.dim_model)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(
0, x.size(1), dtype=torch.float32
).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.dim_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.dim_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Assumes x of shape (bs, seq_len, dim) """
self.extend_pe(x)
output = x.unsqueeze(-1) if x.ndim == 2 else x
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
return self.dropout(output)
# --------------------------------
# kv cache blocks
class CacheView:
def __init__(self, cache_k: torch.Tensor, cache_v: torch.Tensor):
self.cache_k = cache_k
self.cache_v = cache_v
@property
def sliding_window(self):
return self.cache_k.shape[1]
class RotatingBufferCache:
"""
This is an example that implements a less naive rotating buffer cache, allowing for variable length sequences.
Allocated cache is rectangular which is wasteful (see PagedAttention for better mechanisms)
"""
def __init__(self, n_layers: int, max_batch_size: int, sliding_window: int, n_kv_heads: int, head_dim: int):
self.sliding_window = sliding_window
self.n_kv_heads = n_kv_heads
self.head_dim = head_dim
self.cache_k = torch.empty((
n_layers,
max_batch_size,
sliding_window,
n_kv_heads,
head_dim
))
self.cache_v = torch.empty((
n_layers,
max_batch_size,
sliding_window,
n_kv_heads,
head_dim
))
def get_view(self, layer_id: int) -> CacheView:
return CacheView(self.cache_k[layer_id], self.cache_v[layer_id])
@property
def device(self):
return self.cache_k.device
def to(self, device: torch.device, dtype: torch.dtype):
self.cache_k = self.cache_k.to(device=device, dtype=dtype)
self.cache_v = self.cache_v.to(device=device, dtype=dtype)
return self
# --------------------------------
# Mistral transformer blocks
# Code for the follow blocks are adapted from
# https://github.com/mistralai/mistral-src
# Thank you Mistral team!
@dataclass
class ModelArgs:
vocab_size: int
dim: int = 1152 # default for mars3 and before: 1024
n_layers: int = 24
head_dim: int = 64 # = dim/n_heads
hidden_dim: int = 3584
n_heads: int = 16
n_kv_heads: int = 16 # default: 8
sliding_window: int = 1792
norm_eps: float = 1e-5
max_batch_size: int = 256
def repeat_kv(keys: torch.Tensor, values: torch.Tensor, repeats: int):
if repeats == 1: return keys, values
keys = torch.repeat_interleave(keys, repeats=repeats, dim=2)
values = torch.repeat_interleave(values, repeats=repeats, dim=2)
return keys, values
def _reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""
freqs_cis: complex - (seq_len, head_dim / 2)
x: complex - (bsz, seq_len, head_dim / 2)
"""
ndim = x.ndim
assert 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), (
freqs_cis.shape,
(x.shape[1], x.shape[-1]),
)
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = _reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> torch.Tensor:
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
return torch.polar(torch.ones_like(freqs), freqs) # complex64
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
self.repeats = self.n_heads // self.n_kv_heads
self.sliding_window = self.args.sliding_window
self.scale = self.args.head_dim**-0.5
self.wq = nn.Linear(
args.dim,
args.n_heads * args.head_dim,
bias=False
)
self.wk = nn.Linear(
args.dim,
args.n_kv_heads * args.head_dim,
bias=False
)
self.wv = nn.Linear(
args.dim,
args.n_kv_heads * args.head_dim,
bias=False
)
self.wo = nn.Linear(
args.n_heads * args.head_dim,
args.dim,
bias=False
)
def forward(
self, x: torch.Tensor, freqs_cis: torch.Tensor, positions: torch.Tensor, mask: Optional[torch.Tensor], cache: Optional[CacheView]
) -> torch.Tensor:
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_heads, self.args.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.args.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.args.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
# The cache is a rotating buffer
if cache is not None:
scatter_pos = (positions[-self.sliding_window:] % self.sliding_window)[None, :, None, None]
scatter_pos = scatter_pos.repeat(bsz, 1, self.n_kv_heads, self.args.head_dim)
cache.cache_k[:bsz].scatter_(dim=1, index=scatter_pos, src=xk[:, -self.sliding_window:])
cache.cache_v[:bsz].scatter_(dim=1, index=scatter_pos, src=xv[:, -self.sliding_window:])
if positions.shape[0] > 1:
# prefill
key, value = repeat_kv(xk, xv, self.repeats)
else:
cur_pos = positions[-1].item() + 1
key, value = repeat_kv(cache.cache_k[:bsz, :cur_pos, ...], cache.cache_v[:bsz, :cur_pos, ...], self.repeats)
# print(f"Internal: {xq.shape}, key: {key.shape}, mask: {mask.shape} | {mask.dtype} | xq: {xq.dtype} | mask: {mask} ")
# if mask is not None:
# mask = mask[None, None, ...].expand(bsz, self.n_heads, -1, -1)
# mask = mask.to(key.dtype)
query = xq.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# # scores : [bsz, n_heads, seqlen | 1, seqlen]
# scores = torch.matmul(query, key.transpose(2, 3)) * self.scale
output = F.scaled_dot_product_attention(query, key, value, mask) # (bs, n_local_heads, slen, head_dim)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.w1 = nn.Linear(
args.dim,
args.hidden_dim,
bias=False
)
self.w2 = nn.Linear(
args.hidden_dim,
args.dim,
bias=False
)
self.w3 = nn.Linear(
args.dim,
args.hidden_dim,
bias=False
)
def forward(self, x) -> torch.Tensor:
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward = FeedForward(args=args)
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.args = args
def forward(
self, x: torch.Tensor, freqs_cis: torch.Tensor, positions: torch.Tensor, mask: Optional[torch.Tensor], cache: Optional[CacheView]
) -> torch.Tensor:
r = self.attention.forward(self.attention_norm(x), freqs_cis, positions, mask, cache)
h = x + r
r = self.feed_forward.forward(self.ffn_norm(h))
out = h + r
return out
class MistralTransformer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.n_layers = args.n_layers
assert self.vocab_size > 0
# self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
self.layers = torch.nn.ModuleList(
[TransformerBlock(args=args) for _ in range(args.n_layers)]
)
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(
args.dim,
args.vocab_size,
bias=False
)
# self.freqs_cis
self.freqs_cis = precompute_freqs_cis(self.args.head_dim, 128_000)
@property
def dtype(self) -> torch.dtype:
return self.tok_embeddings.weight.dtype
@property
def device(self) -> torch.device:
return self.tok_embeddings.weight.device
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
cache: Optional[RotatingBufferCache]
):
h = input_ids
if self.freqs_cis.device != h.device:
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[positions]
mask: Optional[torch.Tensor] = None
if input_ids.shape[1] > 1:
seqlen = input_ids.shape[1]
tensor = torch.full(
(seqlen, seqlen),
dtype=h.dtype,
fill_value=1,
device=h.device,
)
mask = torch.tril(tensor, diagonal=0).to(h.dtype)
# make the mask banded to account for sliding window
mask = torch.triu(mask, diagonal=-self.args.sliding_window)
mask = torch.log(mask)
for layer_id, layer in enumerate(self.layers):
cache_view = None if cache is None else cache.get_view(layer_id)
h = layer(h, freqs_cis, positions, mask, cache_view)
return self.output(self.norm(h))
|