File size: 17,389 Bytes
4c64221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from .nn_future import (FNNSwiGLU, MistralTransformer, ModelArgs,
RotatingBufferCache, SinePositionalEmbedding)
from .utils import construct_padding_mask, length_to_mask
LAYERNORM_EPS = 4e-5
# ------------------------
# Code adapted from OpenAI guided diffusion repo
def timestep_embedding(timesteps, dim, max_period=10000, dtype=torch.float32):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
# --------------------------------
# autoregressive codec language model
class CodecLM(nn.Module):
def __init__(self, n_vocab, dim=1536, nhead=24, n_layers=26, n_spk_layers=2, dim_ff_scale=None, sliding_window=3000) -> None:
super().__init__()
if dim_ff_scale is None: hidden_dim = int(dim*4*(3/4))
else: hidden_dim = int(dim*dim_ff_scale)
self.cfg = ModelArgs(n_vocab, dim=dim, n_layers=n_layers, n_heads=nhead, n_kv_heads=nhead, hidden_dim=hidden_dim, sliding_window=sliding_window)
self.ar = MistralTransformer(self.cfg)
self.embed = nn.Embedding(n_vocab, dim)
# --- spk embedding network
dim_ff = int(dim*4*(3/4))
self.pos_embedding = SinePositionalEmbedding(dim, scale=False, alpha=True)
self.ref_chunked_emb = ChunkedEmbedding(1024 + 1, 8, dim) # add 1 for pad idx
self.spk_identity_emb = nn.Embedding(1, dim)
# define custom decoder
encoder_layer = nn.TransformerEncoderLayer(dim, nhead, dim_ff,
activation=FNNSwiGLU(dim, dim_ff), dropout=0,
batch_first=True, norm_first=True, layer_norm_eps=LAYERNORM_EPS)
encoder_layer.linear1 = nn.Identity()
self.spk_encoder = nn.TransformerEncoder(encoder_layer, n_spk_layers, norm=nn.LayerNorm(dim, eps=LAYERNORM_EPS))
# monkeypatch for broken copy.deepcopy of nn.Modules in nn.TransformerDecoder
for l in self.spk_encoder.layers: l.activation = FNNSwiGLU(dim, dim_ff)
@torch.inference_mode
def get_spk_embedding(self, spk_reference, c_codes_lengths=None) -> Tensor:
""" Gets speaker reference embeddings using `spk_reference` codes of shape (bs, seq_len, n_codebooks). """
bs = spk_reference.shape[0]
if bs != 1:
raise AssertionError(f"Speaker embedding extraction only implemented using for bs=1 currently.")
spk_seq = self.ref_chunked_emb(spk_reference) # (bs, sl, dim)
spk_ref_emb = self.spk_identity_emb.weight[None].expand(bs, -1, -1) # (bs, 1, dim)
spk_seq = torch.cat([spk_ref_emb, spk_seq], dim=1) # (bs, 1+sl, dim)
# add pos encoding
spk_seq = self.pos_embedding(spk_seq)
# codebook goes from indices 0->1023, padding is idx 1024 (the 1025th entry)
src_key_padding_mask = construct_padding_mask(spk_reference[:, :, 0], 1024)
src_key_padding_mask = torch.cat((
# append a zero here since we DO want to attend to initial position.
torch.zeros(src_key_padding_mask.shape[0], 1, dtype=bool, device=src_key_padding_mask.device),
src_key_padding_mask
),
dim=1)
# pass through transformer
res = self.spk_encoder(spk_seq, is_causal=False, src_key_padding_mask=src_key_padding_mask)[:, :1] # select first element -> now (bs, 1, dim).
return res.squeeze(1)
def forward(self, x: Tensor, x_padding_mask: Optional[Tensor] = None, spk_reference: Optional[Tensor] = None,
cache: Optional[RotatingBufferCache] = None, counter: int = 0) -> Tensor:
""" Inputs:
- `x`: (bs, seq_len, vocab_size)
- `x_padding_mask`: (bs, seq_len) mask for each input, True for positions to *ignore*, False otherwise.
Note that since this is an autoregressive model, this doesn't actually matter for infernece, so it is ignored at inference.
- `spk_reference`: (bs, seq_len, n_codebooks) corresponding to the speaker reference to clone from.
- `cache` and `counter`: used for kv caching, optional.
Returns `x` of same shape (bs, seq_len, dim)
"""
x = self.embed(x)
# --- speaker reference/embedding
if spk_reference is not None:
# compute ref
bs = spk_reference.shape[0]
spk_seq = self.ref_chunked_emb(spk_reference) # (bs, sl, dim)
spk_ref_emb = self.spk_identity_emb.weight[None].expand(bs, -1, -1) # (bs, 1, dim)
spk_seq = torch.cat([spk_ref_emb, spk_seq], dim=1) # (bs, 1+sl, dim)
# add pos encoding
spk_seq = self.pos_embedding(spk_seq)
# codebook goes from indices 0->1023, padding is idx 1024 (the 1025th entry)
src_key_padding_mask = construct_padding_mask(spk_reference[:, :, 0], 1024)
src_key_padding_mask = torch.cat((
# append a zero here since we DO want to attend to initial position.
torch.zeros(src_key_padding_mask.shape[0], 1, dtype=bool, device=src_key_padding_mask.device),
src_key_padding_mask
),
dim=1)
# pass through transformer
res = self.spk_encoder(spk_seq, is_causal=False, src_key_padding_mask=src_key_padding_mask)[:, :1] # select first element -> now (bs, 1, dim).
x = torch.cat([res, x], dim=1)
positions = torch.arange(0, x.shape[1], device=x.device, dtype=torch.long)
if cache is not None and counter != 1:
# using only the last token to predict the next one
x = x[:,-1,:].unsqueeze(1)
positions = positions[-1:]
x = self.ar(x, positions, cache) # (bs, seq_len, vocab)
if spk_reference is not None and (cache is None or counter == 1):
x = x[:, 1:] # strip out the first output token corresponding to the speaker embedding token.
return x
# -------------------------
# residual discrete diffusion model
class ChunkedEmbedding(nn.Module):
def __init__(self, codebook_size: int, n_quantizer: int, dim: int) -> None:
super().__init__()
assert dim % n_quantizer == 0, f"ChunkedEmbedding output dim ({dim}) must be divisible by n_quant {n_quantizer}"
self.embs = nn.ModuleList([nn.Embedding(codebook_size, dim//n_quantizer) for _ in range(n_quantizer)])
def forward(self, x: Tensor) -> Tensor:
""" Embeds each codebook index in `x` (bs, seq_len, n_quantizer) to an embedding vector, concatenating results.
Returns output of shape (bs, seq_len, dim)
"""
y = torch.cat([self.embs[i](x[..., i]) for i in range(x.shape[-1])], dim=-1)
return y
class ResidualTransformer(nn.Module):
def __init__(self, n_text_vocab, n_quant=1024, dim=1024, nhead=16,
enc_layers=8, dec_layers=16, n_spk_layers=3,
c_quant_levels=8, pred_quant_levels=8,
t_emb_dim=1024, norm_first=True, p_cond_drop=0.1, dropout=0) -> None:
super().__init__()
self.cond_pos_embedding = SinePositionalEmbedding(dim, scale=False, alpha=True)
self.pos_embedding = SinePositionalEmbedding(dim, scale=False, alpha=True)
# *4 from heuristic, *2/3 from swiglu, since there are 3 linear matrices not 2.
# so we must keep # params the same.
dim_ff = int(dim*4*(3/4))
# define custom encoder
encoder_layer = nn.TransformerEncoderLayer(dim, nhead, dim_ff,
activation=FNNSwiGLU(dim, dim_ff), dropout=dropout,
batch_first=True, norm_first=norm_first, layer_norm_eps=LAYERNORM_EPS)
encoder_layer.linear1 = nn.Identity()
encoder = nn.TransformerEncoder(encoder_layer, enc_layers, norm=nn.LayerNorm(dim, eps=LAYERNORM_EPS) if norm_first else None)
# define custom decoder
decoder_layer = nn.TransformerDecoderLayer(dim, nhead, dim_ff,
activation=FNNSwiGLU(dim, dim_ff), dropout=dropout,
batch_first=True, norm_first=norm_first, layer_norm_eps=LAYERNORM_EPS)
decoder_layer.linear1 = nn.Identity()
decoder = nn.TransformerDecoder(decoder_layer, dec_layers, norm=nn.LayerNorm(dim, eps=LAYERNORM_EPS) if norm_first else None)
# monkeypatch for broken copy.deepcopy of nn.Modules in nn.TransformerDecoder
for l in decoder.layers: l.activation = FNNSwiGLU(dim, dim_ff)
self.tfm = nn.Transformer(dim, nhead, dim_feedforward=dim_ff, batch_first=True,
norm_first=norm_first,
num_encoder_layers=enc_layers,
num_decoder_layers=dec_layers,
custom_encoder=encoder,
custom_decoder=decoder,
layer_norm_eps=LAYERNORM_EPS,
dropout=dropout
)
# Timestep embedding network
self.t_emb_dim = t_emb_dim
self.timestep_encoder_emb = nn.Sequential(
nn.Linear(t_emb_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim)
)
self.timestep_decoder_emb = nn.Sequential(
nn.Linear(t_emb_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim)
)
self.text_embed = nn.Embedding(n_text_vocab, dim)
## ----> reference / conditioning encoder:
self.ref_embedder = ChunkedEmbedding(n_quant, c_quant_levels, dim)
self.ref_pos_embedding = SinePositionalEmbedding(dim, scale=False, alpha=True)
self.spk_identity_emb = nn.Embedding(1, dim)
spk_encoder_layer = nn.TransformerEncoderLayer(dim, nhead, dim_ff,
activation=FNNSwiGLU(dim, dim_ff), dropout=dropout,
batch_first=True, norm_first=True, layer_norm_eps=LAYERNORM_EPS)
spk_encoder_layer.linear1 = nn.Identity()
self.spk_encoder = nn.TransformerEncoder(spk_encoder_layer, n_spk_layers, norm=nn.LayerNorm(dim, eps=LAYERNORM_EPS))
# monkeypatch for broken copy.deepcopy of nn.Modules in nn.TransformerDecoder
for l in self.spk_encoder.layers: l.activation = FNNSwiGLU(dim, dim_ff)
# ----> end speaker encoder network
# self.residual_encoder = nn.Embedding(n_quant, dim) # only encode first quantization level of decoder input.
self.residual_encoder = ChunkedEmbedding(n_quant, c_quant_levels, dim)
self.residual_decoder = nn.ModuleList([
nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, n_quant)
) for i in range(pred_quant_levels)
])
self.n_quantizer = pred_quant_levels
self.p_cond_drop = p_cond_drop
@torch.inference_mode
def get_spk_embedding(self, c_codes, c_codes_length) -> Tensor:
""" Obtain speaker embedding vectors using `c_codes` from reference encodec sequences, and `c_codes_length` of lengths for each sequence """
bs = c_codes.shape[0]
spk_seq = self.ref_embedder(c_codes) # (bs, sl, dim)
spk_ref_emb = self.spk_identity_emb.weight[None].expand(bs, -1, -1) # (bs, 1, dim)
spk_seq = torch.cat([spk_ref_emb, spk_seq], dim=1) # (bs, 1+sl, dim)
# add pos encoding
spk_seq = self.ref_pos_embedding(spk_seq)
# add 1 to c_codes_length to account for the fact that we concatenate the spk_ref_emb to it.
src_key_padding_mask = length_to_mask(c_codes_length+1, torch.zeros_like(c_codes_length), max_len=spk_seq.shape[1])
src_key_padding_mask = src_key_padding_mask.to(dtype=torch.bool, device=spk_seq.device)
# pass through transformer
res = self.spk_encoder(spk_seq, is_causal=False, src_key_padding_mask=src_key_padding_mask)[:, :1] # select first element -> now (bs, 1, dim).
return res.squeeze(1)
def forward(self, c_text: Tensor, c_codes: Tensor, c_texts_length: Tensor, c_codes_length: Tensor,
x: Tensor, x_padding_mask: Tensor, t: Tensor, drop_cond=False):
""" Input:
- `c_text`: (bs, seq_len1) the prompt text (BPE encoded)
- `c_codes`: (bs, seq_len2, n_quant) the full tokenized codes of the reference speech
- `c_texts_length`: (bs, ) the length of the codes in the text prompt
- `c_codes_length`: (bs, ) the length of the prompt acoustic token codes in `c_codes`.
- `x`: (bs, seq_len3) L0 residual codes
- `x`: (bs, seq_len3, n_quant) L0 residual codes
- `x_padding_mask`: (bs, seq_len3) masking for residual codes
- `t`: (bs) timestep
- `drop_cond`: bool, whether or not to forcibly drop the conditioning information.
Returns:
- outs: (bs, seq_len, n_quantizer, codebook_size)
"""
c_text = self.text_embed(c_text) # (bs, seq_len1, dim)
## ----> reference / conditioning encoder:
bs = c_codes.shape[0]
if self.training:
zero_cond_inds = torch.rand_like(t, dtype=c_text.dtype) < self.p_cond_drop
else:
# never randomly zero when in eval mode
zero_cond_inds = torch.zeros_like(t, dtype=torch.bool)
if drop_cond:
# force drop conditioning
zero_cond_inds = torch.ones_like(t, dtype=torch.bool)
c_codes_length[zero_cond_inds] = 0
c_codes[zero_cond_inds] = 1024
spk_seq = self.ref_embedder(c_codes) # (bs, sl, dim)
spk_ref_emb = self.spk_identity_emb.weight[None].expand(bs, -1, -1) # (bs, 1, dim)
spk_seq = torch.cat([spk_ref_emb, spk_seq], dim=1) # (bs, 1+sl, dim)
# add pos encoding
spk_seq = self.ref_pos_embedding(spk_seq)
# add 1 to c_codes_length to account for the fact that we concatenate the spk_ref_emb to it.
src_key_padding_mask = length_to_mask(c_codes_length+1, torch.zeros_like(c_codes_length), max_len=spk_seq.shape[1])
src_key_padding_mask = src_key_padding_mask.to(dtype=torch.bool, device=spk_seq.device)
# pass through transformer
res = self.spk_encoder(spk_seq, is_causal=False, src_key_padding_mask=src_key_padding_mask)[:, :1] # select first element -> now (bs, 1, dim).
c_codes = res # (bs, 1, dim)
c_codes_lengths_extract = torch.ones_like(c_codes_length) # manually override all the code lengths to equal 1, since we only have 1 spk embedding.
## ----> end reference / conditioning encoder:
## ----> timestep embeddings and parsing
t_emb = timestep_embedding(t, self.t_emb_dim, dtype=c_text.dtype)
t_emb_encoder = self.timestep_encoder_emb(t_emb) # (bs, t_dim)
t_emb_decoder = self.timestep_decoder_emb(t_emb)
## ----> concatenating text/phone inputs and implicit speaker embedding.
c_phones_unpacked = nn.utils.rnn.unpad_sequence(c_text, c_texts_length.cpu(), batch_first=True)
c_codes_unpacked = nn.utils.rnn.unpad_sequence(c_codes, c_codes_lengths_extract.cpu(), batch_first=True)
# >>> Concat [speaker codes, text codes]
assert all(b.shape[0] == 1 for b in c_codes_unpacked)
c_joined = [torch.cat((b, a), dim=0) for a, b in zip(c_phones_unpacked, c_codes_unpacked)]
c = nn.utils.rnn.pad_sequence(c_joined, batch_first=True)
c_joined_lengths = torch.tensor([p.shape[0] for p in c_joined], device=c.device, dtype=torch.long)
c_padding_mask = length_to_mask(c_joined_lengths, torch.zeros_like(c_joined_lengths))
c = self.cond_pos_embedding(c)
## Format input:
x = self.residual_encoder(x) # (bs, seq_len3, dim)
x = self.pos_embedding(x)
x = x + t_emb_decoder[:, None]
c = c + t_emb_encoder[:, None]
## Perform prediction:
output = self.tfm(c, x, src_key_padding_mask=c_padding_mask,
tgt_key_padding_mask=x_padding_mask,
memory_key_padding_mask=c_padding_mask) # (bs, seq_len, dim)
outs = torch.stack([self.residual_decoder[i](output) for i in range(self.n_quantizer)], dim=-1) # (bs, seq_len, logit_dim, n_quant)
return outs
|