--- license: openrail++ library_name: diffusers inference: false tags: - lora - text-to-image - stable-diffusion - flux base_model: black-forest-labs/FLUX.1-dev --- # Hyper-SD Official Repository of the paper: *[Hyper-SD](https://arxiv.org/abs/2404.13686)*. Project Page: https://hyper-sd.github.io/ ![](./hypersd_tearser.jpg) ## NewsπŸ”₯πŸ”₯πŸ”₯ * Aug.26, 2024. πŸ’₯πŸ’₯πŸ’₯ Our 8-steps and 16-steps **FLUX.1-dev-related LoRAs** are available now! We recommend LoRA scales around 0.125 that is adaptive with training and guidance scale could be kept on 3.5. Lower step LoRAs would be coming soon. πŸ’₯πŸ’₯πŸ’₯ * Aug.19, 2024. SD3-related CFG LoRAs are available now! We recommend setting guidance scale to 3.0/5.0/7.0 at 4/8/16-steps. Don't forget to fuse lora with a relatively small scale (e.g. 0.125 that is adaptive with training) before inference with diffusers. Note that 8-steps and 16-steps LoRA can also inference on a little bit smaller steps like 6-steps and 12-steps, respectively. Hope to hear your feedback, FLUX-related models will be coming next week. * May.13, 2024. The 12-Steps CFG-Preserved [Hyper-SDXL-12steps-CFG-LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-12steps-CFG-lora.safetensors) and [Hyper-SD15-12steps-CFG-LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SD15-12steps-CFG-lora.safetensors) is also available now(support 5~8 guidance scales), this could be more practical with better trade-off between performance and speed. Enjoy! * Apr.30, 2024. Our 8-Steps CFG-Preserved [Hyper-SDXL-8steps-CFG-LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-8steps-CFG-lora.safetensors) and [Hyper-SD15-8steps-CFG-LoRA](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SD15-8steps-CFG-lora.safetensors) is available now(support 5~8 guidance scales), we strongly recommend making the 8-step CFGLora a standard configuration for all SDXL and SD15 models!!! * Apr.28, 2024. ComfyUI workflows on 1-Step Unified LoRA πŸ₯° with TCDScheduler to inference on different steps are [released](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui)! Remember to install ⭕️ [ComfyUI-TCD](https://github.com/JettHu/ComfyUI-TCD) in your `ComfyUI/custom_nodes` folder!!! You're encouraged to adjust the eta parameter to get better results 🌟! * Apr.26, 2024. Thanks to @[Pete](https://huggingface.co/pngwn) for contributing to our [scribble demo](https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble) with larger canvas right now πŸ‘. * Apr.24, 2024. The ComfyUI [workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-1step-Unet-workflow.json) and [checkpoint](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SDXL-1step-Unet-Comfyui.fp16.safetensors) on 1-Step SDXL UNet ✨ is also available! Don't forget ⭕️ to install the custom [scheduler](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui/ComfyUI-HyperSDXL1StepUnetScheduler) in your `ComfyUI/custom_nodes` folder!!! * Apr.23, 2024. ComfyUI workflows on N-Steps LoRAs are [released](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui)! Worth a try for creators πŸ’₯! * Apr.23, 2024. Our technical report πŸ“š is uploaded to [arXiv](https://arxiv.org/abs/2404.13686)! Many implementation details are provided and we welcome more discussionsπŸ‘. * Apr.21, 2024. Hyper-SD ⚑️ is highly compatible and work well with different base models and controlnets. To clarify, we also append the usage example of controlnet [here](https://huggingface.co/ByteDance/Hyper-SD#controlnet-usage). * Apr.20, 2024. Our checkpoints and two demos πŸ€— (i.e. [SD15-Scribble](https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble) and [SDXL-T2I](https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I)) are publicly available on [HuggingFace Repo](https://huggingface.co/ByteDance/Hyper-SD). ## Try our Hugging Face demos: Hyper-SD Scribble demo host on [πŸ€— scribble](https://huggingface.co/spaces/ByteDance/Hyper-SD15-Scribble) Hyper-SDXL One-step Text-to-Image demo host on [πŸ€— T2I](https://huggingface.co/spaces/ByteDance/Hyper-SDXL-1Step-T2I) ## Introduction Hyper-SD is one of the new State-of-the-Art diffusion model acceleration techniques. In this repository, we release the models distilled from [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev), [SD3-Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), [SDXL Base 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and [Stable-Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)。 ## Checkpoints * `Hyper-FLUX.1-dev-Nsteps-lora.safetensors`: Lora checkpoint, for FLUX.1-dev-related models. * `Hyper-SD3-Nsteps-CFG-lora.safetensors`: Lora checkpoint, for SD3-related models. * `Hyper-SDXL-Nstep-lora.safetensors`: Lora checkpoint, for SDXL-related models. * `Hyper-SD15-Nstep-lora.safetensors`: Lora checkpoint, for SD1.5-related models. * `Hyper-SDXL-1step-unet.safetensors`: Unet checkpoint distilled from SDXL-Base. ## Text-to-Image Usage ### FLUX.1-dev-related models ```python import torch from diffusers import FluxPipeline from huggingface_hub import hf_hub_download base_model_id = "black-forest-labs/FLUX.1-dev" repo_name = "ByteDance/Hyper-SD" # Take 8-steps lora as an example ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" # Load model, please fill in your access tokens since FLUX.1-dev repo is a gated model. pipe = FluxPipeline.from_pretrained(base_model_id, token="xxx") pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora(lora_scale=0.125) pipe.to("cuda", dtype=torch.float16) image=pipe(prompt="a photo of a cat", num_inference_steps=8, guidance_scale=3.5).images[0] image.save("output.png") ``` ### SD3-related models ```python import torch from diffusers import StableDiffusion3Pipeline from huggingface_hub import hf_hub_download base_model_id = "stabilityai/stable-diffusion-3-medium-diffusers" repo_name = "ByteDance/Hyper-SD" # Take 8-steps lora as an example ckpt_name = "Hyper-SD3-8steps-CFG-lora.safetensors" # Load model, please fill in your access tokens since SD3 repo is a gated model. pipe = StableDiffusion3Pipeline.from_pretrained(base_model_id, token="xxx") pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora(lora_scale=0.125) pipe.to("cuda", dtype=torch.float16) image=pipe(prompt="a photo of a cat", num_inference_steps=8, guidance_scale=5.0).images[0] image.save("output.png") ``` ### SDXL-related models #### 2-Steps, 4-Steps, 8-steps LoRA Take the 2-steps LoRA as an example, you can also use other LoRAs for the corresponding inference steps setting. ```python import torch from diffusers import DiffusionPipeline, DDIMScheduler from huggingface_hub import hf_hub_download base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" repo_name = "ByteDance/Hyper-SD" # Take 2-steps lora as an example ckpt_name = "Hyper-SDXL-2steps-lora.safetensors" # Load model. pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # lower eta results in more detail prompt="a photo of a cat" image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0] ``` #### Unified LoRA (support 1 to 8 steps inference) You can flexibly adjust the number of inference steps and eta value to achieve best performance. ```python import torch from diffusers import DiffusionPipeline, TCDScheduler from huggingface_hub import hf_hub_download base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" repo_name = "ByteDance/Hyper-SD" ckpt_name = "Hyper-SDXL-1step-lora.safetensors" # Load model. pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta=1.0 prompt="a photo of a cat" image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0] ``` #### 1-step SDXL Unet Only for the single step inference. ```python import torch from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler from huggingface_hub import hf_hub_download from safetensors.torch import load_file base_model_id = "stabilityai/stable-diffusion-xl-base-1.0" repo_name = "ByteDance/Hyper-SD" ckpt_name = "Hyper-SDXL-1step-Unet.safetensors" # Load model. unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda")) pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") # Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) # Set start timesteps to 800 in the one-step inference to get better results prompt="a photo of a cat" image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0] ``` ### SD1.5-related models #### 2-Steps, 4-Steps, 8-steps LoRA Take the 2-steps LoRA as an example, you can also use other LoRAs for the corresponding inference steps setting. ```python import torch from diffusers import DiffusionPipeline, DDIMScheduler from huggingface_hub import hf_hub_download base_model_id = "runwayml/stable-diffusion-v1-5" repo_name = "ByteDance/Hyper-SD" # Take 2-steps lora as an example ckpt_name = "Hyper-SD15-2steps-lora.safetensors" # Load model. pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") prompt="a photo of a cat" image=pipe(prompt=prompt, num_inference_steps=2, guidance_scale=0).images[0] ``` #### Unified LoRA (support 1 to 8 steps inference) You can flexibly adjust the number of inference steps and eta value to achieve best performance. ```python import torch from diffusers import DiffusionPipeline, TCDScheduler from huggingface_hub import hf_hub_download base_model_id = "runwayml/stable-diffusion-v1-5" repo_name = "ByteDance/Hyper-SD" ckpt_name = "Hyper-SD15-1step-lora.safetensors" # Load model. pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta=1.0 prompt="a photo of a cat" image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, eta=eta).images[0] ``` ## ControlNet Usage ### SDXL-related models #### 2-Steps, 4-Steps, 8-steps LoRA Take Canny Controlnet and 2-steps inference as an example: ```python import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, DDIMScheduler from huggingface_hub import hf_hub_download # Load original image image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") image = np.array(image) # Prepare Canny Control Image low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("control.png") control_weight = 0.5 # recommended for good generalization # Initialize pipeline controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16).to("cuda") pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-2steps-lora.safetensors")) # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") pipe.fuse_lora() image = pipe("A chocolate cookie", num_inference_steps=2, image=control_image, guidance_scale=0, controlnet_conditioning_scale=control_weight).images[0] image.save('image_out.png') ``` #### Unified LoRA (support 1 to 8 steps inference) Take Canny Controlnet as an example: ```python import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, TCDScheduler from huggingface_hub import hf_hub_download # Load original image image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") image = np.array(image) # Prepare Canny Control Image low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("control.png") control_weight = 0.5 # recommended for good generalization # Initialize pipeline controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16).to("cuda") # Load Hyper-SD15-1step lora pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-lora.safetensors")) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta=1.0 image = pipe("A chocolate cookie", num_inference_steps=4, image=control_image, guidance_scale=0, controlnet_conditioning_scale=control_weight, eta=eta).images[0] image.save('image_out.png') ``` ### SD1.5-related models #### 2-Steps, 4-Steps, 8-steps LoRA Take Canny Controlnet and 2-steps inference as an example: ```python import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, DDIMScheduler from huggingface_hub import hf_hub_download controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny" # Load original image image = load_image("https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png") image = np.array(image) # Prepare Canny Control Image low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("control.png") # Initialize pipeline controlnet = ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16).to("cuda") pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-2steps-lora.safetensors")) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") image = pipe("a blue paradise bird in the jungle", num_inference_steps=2, image=control_image, guidance_scale=0).images[0] image.save('image_out.png') ``` #### Unified LoRA (support 1 to 8 steps inference) Take Canny Controlnet as an example: ```python import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, TCDScheduler from huggingface_hub import hf_hub_download controlnet_checkpoint = "lllyasviel/control_v11p_sd15_canny" # Load original image image = load_image("https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png") image = np.array(image) # Prepare Canny Control Image low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("control.png") # Initialize pipeline controlnet = ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16).to("cuda") # Load Hyper-SD15-1step lora pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SD15-1step-lora.safetensors")) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta=1.0 image = pipe("a blue paradise bird in the jungle", num_inference_steps=1, image=control_image, guidance_scale=0, eta=eta).images[0] image.save('image_out.png') ``` ## Comfyui Usage * `Hyper-SDXL-Nsteps-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-Nsteps-lora-workflow.json) * `Hyper-SD15-Nsteps-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SD15-Nsteps-lora-workflow.json) * `Hyper-SDXL-1step-Unet-Comfyui.fp16.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-1step-Unet-workflow.json) * **REQUIREMENT / INSTALL** for 1-Step SDXL UNet: Please install our [scheduler folder](https://huggingface.co/ByteDance/Hyper-SD/tree/main/comfyui/ComfyUI-HyperSDXL1StepUnetScheduler) into your `ComfyUI/custom_nodes` to enable sampling from 800 timestep instead of 999. * i.e. making sure the `ComfyUI/custom_nodes/ComfyUI-HyperSDXL1StepUnetScheduler` folder exist. * For more details, please refer to our [technical report](https://arxiv.org/abs/2404.13686). * `Hyper-SD15-1step-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SD15-1step-unified-lora-workflow.json) * `Hyper-SDXL-1step-lora.safetensors`: [text-to-image workflow](https://huggingface.co/ByteDance/Hyper-SD/blob/main/comfyui/Hyper-SDXL-1step-unified-lora-workflow.json) * **REQUIREMENT / INSTALL** for 1-Step Unified LoRAs: Please install the [ComfyUI-TCD](https://github.com/JettHu/ComfyUI-TCD) into your `ComfyUI/custom_nodes` to enable TCDScheduler with support of different inference steps (1~8) using single checkpoint. * i.e. making sure the `ComfyUI/custom_nodes/ComfyUI-TCD` folder exist. * You're encouraged to adjust the eta parameter in TCDScheduler to get better results. ## Citation ```bibtex @misc{ren2024hypersd, title={Hyper-SD: Trajectory Segmented Consistency Model for Efficient Image Synthesis}, author={Yuxi Ren and Xin Xia and Yanzuo Lu and Jiacheng Zhang and Jie Wu and Pan Xie and Xing Wang and Xuefeng Xiao}, year={2024}, eprint={2404.13686}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```