--- datasets: - vicgalle/worldsim-claude-opus - macadeliccc/opus_samantha - anthracite-org/kalo-opus-instruct-22k-no-refusal - lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT - lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K - QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT - ChaoticNeutrals/Luminous_Opus - kalomaze/Opus_Instruct_3k - kalomaze/Opus_Instruct_25k language: - en base_model: - codellama/CodeLlama-13b-Instruct-hf pipeline_tag: text-generation license: llama2 --- ![CL-13B-Fabula](https://files.catbox.moe/829yml.jpeg) # CL-13B-Fabula CL-13B-Fabula is a fine-tuned version of Facebook's CodeLlama 13B Instruct model, specifically optimized for roleplay and general knowledge tasks while maintaining its chat understanding capabilities. This model is basically a bigger version of [L3.1-8B-Fabula](https://hf.co/BusRune/L3.1-8B-Fabula), since I wanted to make something a bit bigger but my VPS storage can't handle a 70B models so 13B model it is. ## Model Details - **Base Model**: [CodeLlama-13b-Instruct-hf](https://hf.co/codellama/CodeLlama-13b-Instruct-hf) - **Chat Template**: ChatML - **Max Input Tokens**: 16,384 - **Datasets Used In Fine-tuning:** * [vicgalle/worldsim-claude-opus](https://hf.co/datasets/vicgalle/worldsim-claude-opus) * [macadeliccc/opus_samantha](https://hf.co/datasets/macadeliccc/opus_samantha) * [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://hf.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) * [lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT](https://hf.co/datasets/lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-9.5K-ShareGPT) * [lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K](https://hf.co/datasets/lodrick-the-lafted/Sao10K_Claude-3-Opus-Instruct-3.3K) * [QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT](https://hf.co/datasets/QuietImpostor/Sao10K-Claude-3-Opus-Instruct-15K-ShareGPT) * [ChaoticNeutrals/Luminous_Opus](https://hf.co/datasets/ChaoticNeutrals/Luminous_Opus) * [kalomaze/Opus_Instruct_3k](https://hf.co/datasets/kalomaze/Opus_Instruct_3k) * [kalomaze/Opus_Instruct_25k](https://hf.co/datasets/kalomaze/Opus_Instruct_25k) ## Chat Template - In the finetuning ChatML were used. ```js function chatml2(messages) { /** * @param {Array<{role: string, name: string, content: string}>} messages * @returns {{prompt: string, stop: string}} * @description Formats messages into ChatML template format */ const isLastMessageAssistant = messages[messages.length - 1]?.role === "assistant"; return { prompt: messages.map((message, index) => { const nameStr = message.name ? ` [${message.name}]` : ""; const isLast = index === messages.length - 1; const needsEndTag = !isLastMessageAssistant || !isLast; return `<|im_start|>${message.role.toLowerCase()}${nameStr}\n${message.content}${needsEndTag ? "<|im_end|>" : ""}`; }).join("\n") + (isLastMessageAssistant ? "" : "\n<|im_start|>assistant\n"), stop: "<|im_end|>" }; } ``` I would highly recommend you add a set of rules in assistant role at the end of the chat history, like this example below: ```md 1. I will write a response as {{char}} in a short manner and will keep it detailed (I will try to keep it under 300 characters). 2. Response formatting: "This is for talking" *This is for doing an action/ or self-reflection if I decide to write {{char}}'s response in first-person* ex: "Hello, there!" *{name} waves,* "How are you doing today?" 3. When I feel like it is needed for {{user}} to talk, I will not act as {{user}} or for them, I will simply stop generating more text via executing my EOS (end-of-string) token "<|im_end|>", to let the user write their response as {{user}} 4. I will use my past messages as an example of how {{char}} speaks **{{char}}'s response:** ```