BuddhikaWeerasinghe commited on
Commit
ae90098
·
1 Parent(s): c7f97da

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 8.3572
20
- - Accuracy: 0.065
21
 
22
  ## Model description
23
 
@@ -49,16 +49,16 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 2.4197 | 0.1 | 180 | 1.6378 | 0.5327 |
53
- | 0.8573 | 1.1 | 360 | 0.6646 | 0.8411 |
54
- | 0.3788 | 2.1 | 540 | 0.4729 | 0.8692 |
55
- | 0.3128 | 3.1 | 720 | 0.4594 | 0.8785 |
56
- | 0.1661 | 4.1 | 900 | 0.5954 | 0.8318 |
57
- | 0.1321 | 5.1 | 1080 | 0.1972 | 0.9346 |
58
- | 0.0602 | 6.1 | 1260 | 0.3472 | 0.9252 |
59
- | 0.0269 | 7.1 | 1440 | 0.3087 | 0.9252 |
60
- | 0.0058 | 8.1 | 1620 | 0.3169 | 0.9439 |
61
- | 0.0061 | 9.1 | 1800 | 0.2525 | 0.9533 |
62
 
63
 
64
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 8.1890
20
+ - Accuracy: 0.0
21
 
22
  ## Model description
23
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 2.4105 | 0.1 | 180 | 1.6309 | 0.4615 |
53
+ | 0.9175 | 1.1 | 360 | 0.4374 | 0.8787 |
54
+ | 0.5086 | 2.1 | 540 | 0.3801 | 0.8905 |
55
+ | 0.2994 | 3.1 | 720 | 0.3462 | 0.8817 |
56
+ | 0.1555 | 4.1 | 900 | 0.3274 | 0.9231 |
57
+ | 0.1337 | 5.1 | 1080 | 0.1435 | 0.9615 |
58
+ | 0.021 | 6.1 | 1260 | 0.1879 | 0.9615 |
59
+ | 0.0485 | 7.1 | 1440 | 0.1055 | 0.9675 |
60
+ | 0.0019 | 8.1 | 1620 | 0.0864 | 0.9763 |
61
+ | 0.0054 | 9.1 | 1800 | 0.0839 | 0.9763 |
62
 
63
 
64
  ### Framework versions