--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-th-v7_0 results: [] --- # wav2vec2-xls-r-300m-th-v7_0 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4099 - Wer: 0.9988 - Cer: 0.7861 - Clean Cer: 0.7617 - Learning Rate: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Clean Cer | Rate | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:---------:|:------:| | 8.5484 | 0.4 | 500 | 3.6234 | 1.0 | 1.0 | 1.0 | 0.0000 | | 3.2275 | 0.8 | 1000 | 2.2960 | 0.9998 | 0.7081 | 0.6540 | 0.0000 | | 0.9955 | 1.2 | 1500 | 1.2224 | 0.9549 | 0.4327 | 0.3756 | 0.0000 | | 0.66 | 1.61 | 2000 | 0.9559 | 0.9232 | 0.3651 | 0.3040 | 0.0000 | | 0.546 | 2.01 | 2500 | 0.9207 | 0.9481 | 0.3585 | 0.2826 | 0.0000 | | 0.4459 | 2.41 | 3000 | 0.7701 | 0.8693 | 0.2940 | 0.2383 | 0.0000 | | 0.4041 | 2.81 | 3500 | 0.7756 | 0.8224 | 0.2949 | 0.2634 | 0.0000 | | 0.3637 | 3.21 | 4000 | 0.6015 | 0.7015 | 0.2064 | 0.1807 | 0.0000 | | 0.334 | 3.61 | 4500 | 0.5615 | 0.6675 | 0.1907 | 0.1638 | 0.0000 | | 0.3283 | 4.02 | 5000 | 0.6205 | 0.7073 | 0.2092 | 0.1803 | 0.0000 | | 0.3762 | 4.42 | 5500 | 0.7517 | 0.6366 | 0.1778 | 0.1600 | 0.0000 | | 0.4954 | 4.82 | 6000 | 0.9374 | 0.7073 | 0.2023 | 0.1735 | 0.0000 | | 0.5568 | 5.22 | 6500 | 0.8859 | 0.7027 | 0.1982 | 0.1666 | 0.0000 | | 0.6756 | 5.62 | 7000 | 1.0252 | 0.6802 | 0.1920 | 0.1628 | 0.0000 | | 0.7752 | 6.02 | 7500 | 1.1259 | 0.7657 | 0.2309 | 0.1908 | 0.0000 | | 0.8305 | 6.43 | 8000 | 1.3857 | 0.9029 | 0.3252 | 0.2668 | 0.0000 | | 1.7385 | 6.83 | 8500 | 3.2320 | 0.9998 | 0.9234 | 0.9114 | 0.0000 | | 2.7839 | 7.23 | 9000 | 3.3238 | 0.9999 | 0.9400 | 0.9306 | 0.0000 | | 2.8307 | 7.63 | 9500 | 3.2678 | 0.9998 | 0.9167 | 0.9053 | 0.0000 | | 2.7672 | 8.03 | 10000 | 3.2435 | 0.9995 | 0.8992 | 0.8867 | 0.0000 | | 2.7426 | 8.43 | 10500 | 3.2396 | 0.9995 | 0.8720 | 0.8561 | 0.0000 | | 2.7608 | 8.84 | 11000 | 3.2689 | 0.9993 | 0.8399 | 0.8202 | 0.0000 | | 2.8195 | 9.24 | 11500 | 3.3283 | 0.9989 | 0.8084 | 0.7865 | 0.0000 | | 2.9044 | 9.64 | 12000 | 3.4099 | 0.9988 | 0.7861 | 0.7617 | 0.0000 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2