newknp commited on
Commit
4bbfd66
·
1 Parent(s): db33b40

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: wav2vec2-xls-r-300m-th-v7_0
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-xls-r-300m-th-v7_0
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 3.4099
20
+ - Wer: 0.9988
21
+ - Cer: 0.7861
22
+ - Clean Cer: 0.7617
23
+ - Learning Rate: 0.0000
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 16
44
+ - eval_batch_size: 16
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 64
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 500
51
+ - num_epochs: 10
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Clean Cer | Rate |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:---------:|:------:|
58
+ | 8.5484 | 0.4 | 500 | 3.6234 | 1.0 | 1.0 | 1.0 | 0.0000 |
59
+ | 3.2275 | 0.8 | 1000 | 2.2960 | 0.9998 | 0.7081 | 0.6540 | 0.0000 |
60
+ | 0.9955 | 1.2 | 1500 | 1.2224 | 0.9549 | 0.4327 | 0.3756 | 0.0000 |
61
+ | 0.66 | 1.61 | 2000 | 0.9559 | 0.9232 | 0.3651 | 0.3040 | 0.0000 |
62
+ | 0.546 | 2.01 | 2500 | 0.9207 | 0.9481 | 0.3585 | 0.2826 | 0.0000 |
63
+ | 0.4459 | 2.41 | 3000 | 0.7701 | 0.8693 | 0.2940 | 0.2383 | 0.0000 |
64
+ | 0.4041 | 2.81 | 3500 | 0.7756 | 0.8224 | 0.2949 | 0.2634 | 0.0000 |
65
+ | 0.3637 | 3.21 | 4000 | 0.6015 | 0.7015 | 0.2064 | 0.1807 | 0.0000 |
66
+ | 0.334 | 3.61 | 4500 | 0.5615 | 0.6675 | 0.1907 | 0.1638 | 0.0000 |
67
+ | 0.3283 | 4.02 | 5000 | 0.6205 | 0.7073 | 0.2092 | 0.1803 | 0.0000 |
68
+ | 0.3762 | 4.42 | 5500 | 0.7517 | 0.6366 | 0.1778 | 0.1600 | 0.0000 |
69
+ | 0.4954 | 4.82 | 6000 | 0.9374 | 0.7073 | 0.2023 | 0.1735 | 0.0000 |
70
+ | 0.5568 | 5.22 | 6500 | 0.8859 | 0.7027 | 0.1982 | 0.1666 | 0.0000 |
71
+ | 0.6756 | 5.62 | 7000 | 1.0252 | 0.6802 | 0.1920 | 0.1628 | 0.0000 |
72
+ | 0.7752 | 6.02 | 7500 | 1.1259 | 0.7657 | 0.2309 | 0.1908 | 0.0000 |
73
+ | 0.8305 | 6.43 | 8000 | 1.3857 | 0.9029 | 0.3252 | 0.2668 | 0.0000 |
74
+ | 1.7385 | 6.83 | 8500 | 3.2320 | 0.9998 | 0.9234 | 0.9114 | 0.0000 |
75
+ | 2.7839 | 7.23 | 9000 | 3.3238 | 0.9999 | 0.9400 | 0.9306 | 0.0000 |
76
+ | 2.8307 | 7.63 | 9500 | 3.2678 | 0.9998 | 0.9167 | 0.9053 | 0.0000 |
77
+ | 2.7672 | 8.03 | 10000 | 3.2435 | 0.9995 | 0.8992 | 0.8867 | 0.0000 |
78
+ | 2.7426 | 8.43 | 10500 | 3.2396 | 0.9995 | 0.8720 | 0.8561 | 0.0000 |
79
+ | 2.7608 | 8.84 | 11000 | 3.2689 | 0.9993 | 0.8399 | 0.8202 | 0.0000 |
80
+ | 2.8195 | 9.24 | 11500 | 3.3283 | 0.9989 | 0.8084 | 0.7865 | 0.0000 |
81
+ | 2.9044 | 9.64 | 12000 | 3.4099 | 0.9988 | 0.7861 | 0.7617 | 0.0000 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.27.0.dev0
87
+ - Pytorch 1.13.1+cu116
88
+ - Datasets 2.9.0
89
+ - Tokenizers 0.13.2