Delete configuration_xtrimopglm.py
Browse files- configuration_xtrimopglm.py +0 -86
configuration_xtrimopglm.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
from transformers import PretrainedConfig
|
2 |
-
|
3 |
-
|
4 |
-
class ProteinGLMConfig(PretrainedConfig):
|
5 |
-
model_type = "ProteinGLM"
|
6 |
-
def __init__(
|
7 |
-
self,
|
8 |
-
num_layers=36,
|
9 |
-
padded_vocab_size=128,
|
10 |
-
hidden_size=2560,
|
11 |
-
ffn_hidden_size=6832,
|
12 |
-
kv_channels=64,
|
13 |
-
num_attention_heads=40,
|
14 |
-
seq_length=1024,
|
15 |
-
hidden_dropout=0.0,
|
16 |
-
attention_dropout=0.0,
|
17 |
-
layernorm_epsilon=1e-5,
|
18 |
-
glu_activation='geglu',
|
19 |
-
rmsnorm=False,
|
20 |
-
deepnorm=True,
|
21 |
-
apply_residual_connection_post_layernorm=True,
|
22 |
-
post_layer_norm=True,
|
23 |
-
add_bias_linear=True,
|
24 |
-
add_qkv_bias=True,
|
25 |
-
bias_dropout_fusion=True,
|
26 |
-
multi_query_attention=False,
|
27 |
-
multi_query_group_num=1,
|
28 |
-
apply_query_key_layer_scaling=True,
|
29 |
-
attention_softmax_in_fp32=True,
|
30 |
-
fp32_residual_connection=False,
|
31 |
-
quantization_bit=0,
|
32 |
-
rotary_embedding_2d=False,
|
33 |
-
use_pytorch_sdpa=True,
|
34 |
-
is_causal=True,
|
35 |
-
use_cache=True,
|
36 |
-
initializer_range=0.02,
|
37 |
-
moe=False,
|
38 |
-
num_experts=0,
|
39 |
-
experts_per_token=0,
|
40 |
-
untie_head=False,
|
41 |
-
head_num=1,
|
42 |
-
**kwargs
|
43 |
-
):
|
44 |
-
|
45 |
-
if not deepnorm and apply_residual_connection_post_layernorm:
|
46 |
-
print(f"Warning: deepnorm is False and apply_residual_connection_post_layernorm is True")
|
47 |
-
|
48 |
-
if deepnorm:
|
49 |
-
apply_residual_connection_post_layernorm = True
|
50 |
-
|
51 |
-
self.num_layers = num_layers
|
52 |
-
self.vocab_size = padded_vocab_size
|
53 |
-
self.padded_vocab_size = padded_vocab_size
|
54 |
-
self.hidden_size = hidden_size
|
55 |
-
self.ffn_hidden_size = ffn_hidden_size
|
56 |
-
self.kv_channels = kv_channels
|
57 |
-
self.num_attention_heads = num_attention_heads
|
58 |
-
self.seq_length = seq_length
|
59 |
-
self.hidden_dropout = hidden_dropout
|
60 |
-
self.attention_dropout = attention_dropout
|
61 |
-
self.layernorm_epsilon = layernorm_epsilon
|
62 |
-
self.glu_activation = glu_activation
|
63 |
-
self.rmsnorm = rmsnorm
|
64 |
-
self.deepnorm = deepnorm
|
65 |
-
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
66 |
-
self.post_layer_norm = post_layer_norm
|
67 |
-
self.add_bias_linear = add_bias_linear
|
68 |
-
self.add_qkv_bias = add_qkv_bias
|
69 |
-
self.bias_dropout_fusion = bias_dropout_fusion
|
70 |
-
self.multi_query_attention = multi_query_attention
|
71 |
-
self.multi_query_group_num = multi_query_group_num
|
72 |
-
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
73 |
-
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
74 |
-
self.fp32_residual_connection = fp32_residual_connection
|
75 |
-
self.quantization_bit = quantization_bit
|
76 |
-
self.rotary_embedding_2d = rotary_embedding_2d
|
77 |
-
self.is_causal = is_causal
|
78 |
-
self.use_cache = use_cache
|
79 |
-
self.initializer_range = initializer_range
|
80 |
-
self.use_pytorch_sdpa = use_pytorch_sdpa
|
81 |
-
self.moe = moe
|
82 |
-
self.num_experts = num_experts
|
83 |
-
self.experts_per_token = experts_per_token
|
84 |
-
self.untie_head = untie_head
|
85 |
-
self.head_num=head_num
|
86 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|