llava-v1.6-vicuna-7b-LoraR16_LoraAlpha32
Browse files- README.md +202 -0
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- checkpoint-225/README.md +202 -0
- checkpoint-225/adapter_config.json +34 -0
- checkpoint-225/adapter_model.safetensors +3 -0
- checkpoint-225/global_step225/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-225/global_step225/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-225/global_step225/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-225/global_step225/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-225/latest +1 -0
- checkpoint-225/rng_state_0.pth +3 -0
- checkpoint-225/rng_state_1.pth +3 -0
- checkpoint-225/special_tokens_map.json +24 -0
- checkpoint-225/tokenizer.model +3 -0
- checkpoint-225/tokenizer_config.json +43 -0
- checkpoint-225/trainer_state.json +3408 -0
- checkpoint-225/training_args.bin +3 -0
- checkpoint-225/zero_to_fp32.py +604 -0
- checkpoint-256/README.md +202 -0
- checkpoint-256/adapter_config.json +34 -0
- checkpoint-256/adapter_model.safetensors +3 -0
- checkpoint-256/global_step256/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-256/global_step256/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-256/global_step256/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-256/global_step256/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-256/latest +1 -0
- checkpoint-256/rng_state_0.pth +3 -0
- checkpoint-256/rng_state_1.pth +3 -0
- checkpoint-256/special_tokens_map.json +24 -0
- checkpoint-256/tokenizer.model +3 -0
- checkpoint-256/tokenizer_config.json +43 -0
- checkpoint-256/trainer_state.json +3873 -0
- checkpoint-256/training_args.bin +3 -0
- checkpoint-256/zero_to_fp32.py +604 -0
- config.json +76 -0
- non_lora_trainables.bin +3 -0
- optimizer.pt +3 -0
- trainer_state.json +3882 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.6-vicuna-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"q_proj",
|
25 |
+
"v_proj",
|
26 |
+
"up_proj",
|
27 |
+
"down_proj",
|
28 |
+
"k_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b73c8068c0b74c355acf7050c97602b4746dbd4307c66592939ab6e5fd09f8d2
|
3 |
+
size 84758312
|
checkpoint-225/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.6-vicuna-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
checkpoint-225/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"q_proj",
|
25 |
+
"v_proj",
|
26 |
+
"up_proj",
|
27 |
+
"down_proj",
|
28 |
+
"k_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-225/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b73c8068c0b74c355acf7050c97602b4746dbd4307c66592939ab6e5fd09f8d2
|
3 |
+
size 84758312
|
checkpoint-225/global_step225/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f749e035e9e9da4cc0dd643886087815b698de6397b495532f52dd0075ce1aef
|
3 |
+
size 663858
|
checkpoint-225/global_step225/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca48184c3db3775f5d963821aaef1efa7033c56fb3b9cd6c94efe9ee50d9cdbc
|
3 |
+
size 379899885
|
checkpoint-225/global_step225/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5440f7afb94799a6b0dcb31609b2dfc513647d7cc4c21489fad03df49685111
|
3 |
+
size 663858
|
checkpoint-225/global_step225/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72291f1bfbb56a2c1557bf3dc7862aa4e1b2a74125a27e73ebfd49baeda20895
|
3 |
+
size 379899885
|
checkpoint-225/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step225
|
checkpoint-225/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54b8e315eda4a8b76a31c3330ae6890a0c0db1a4ea7137a5aa12599b59988322
|
3 |
+
size 14512
|
checkpoint-225/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbb89ed1bc6873c15ccfab914327b343ef4c5fcca05fa9ce8eccad8ee7204ce4
|
3 |
+
size 14512
|
checkpoint-225/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-225/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
checkpoint-225/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
checkpoint-225/trainer_state.json
ADDED
@@ -0,0 +1,3408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6816287040710449,
|
3 |
+
"best_model_checkpoint": "./checkpoints/llava-v1.6-vicuna-7b/checkpoint-225",
|
4 |
+
"epoch": 7.03125,
|
5 |
+
"eval_steps": 1.0,
|
6 |
+
"global_step": 225,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03125,
|
13 |
+
"grad_norm": 1.3320099054231718,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.3851,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03125,
|
20 |
+
"eval_loss": 1.3910757303237915,
|
21 |
+
"eval_runtime": 63.0135,
|
22 |
+
"eval_samples_per_second": 3.174,
|
23 |
+
"eval_steps_per_second": 0.397,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0625,
|
28 |
+
"grad_norm": 1.0473401758450829,
|
29 |
+
"learning_rate": 8.613531161467863e-06,
|
30 |
+
"loss": 1.3255,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.0625,
|
35 |
+
"eval_loss": 1.3910757303237915,
|
36 |
+
"eval_runtime": 56.9747,
|
37 |
+
"eval_samples_per_second": 3.51,
|
38 |
+
"eval_steps_per_second": 0.439,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.09375,
|
43 |
+
"grad_norm": 1.0429876090069883,
|
44 |
+
"learning_rate": 1.3652123889719709e-05,
|
45 |
+
"loss": 1.3737,
|
46 |
+
"step": 3
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.09375,
|
50 |
+
"eval_loss": 1.3638323545455933,
|
51 |
+
"eval_runtime": 56.6988,
|
52 |
+
"eval_samples_per_second": 3.527,
|
53 |
+
"eval_steps_per_second": 0.441,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.125,
|
58 |
+
"grad_norm": 0.9193695742967616,
|
59 |
+
"learning_rate": 1.7227062322935725e-05,
|
60 |
+
"loss": 1.3309,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.125,
|
65 |
+
"eval_loss": 1.3227791786193848,
|
66 |
+
"eval_runtime": 56.6188,
|
67 |
+
"eval_samples_per_second": 3.532,
|
68 |
+
"eval_steps_per_second": 0.442,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15625,
|
73 |
+
"grad_norm": 1.0043594584185398,
|
74 |
+
"learning_rate": 2e-05,
|
75 |
+
"loss": 1.2984,
|
76 |
+
"step": 5
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.15625,
|
80 |
+
"eval_loss": 1.2728056907653809,
|
81 |
+
"eval_runtime": 58.8213,
|
82 |
+
"eval_samples_per_second": 3.4,
|
83 |
+
"eval_steps_per_second": 0.425,
|
84 |
+
"step": 5
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.1875,
|
88 |
+
"grad_norm": 0.8222566364005439,
|
89 |
+
"learning_rate": 2e-05,
|
90 |
+
"loss": 1.2639,
|
91 |
+
"step": 6
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.1875,
|
95 |
+
"eval_loss": 1.2296103239059448,
|
96 |
+
"eval_runtime": 56.6504,
|
97 |
+
"eval_samples_per_second": 3.53,
|
98 |
+
"eval_steps_per_second": 0.441,
|
99 |
+
"step": 6
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.21875,
|
103 |
+
"grad_norm": 0.6389176248800544,
|
104 |
+
"learning_rate": 2e-05,
|
105 |
+
"loss": 1.2314,
|
106 |
+
"step": 7
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.21875,
|
110 |
+
"eval_loss": 1.1983529329299927,
|
111 |
+
"eval_runtime": 56.5641,
|
112 |
+
"eval_samples_per_second": 3.536,
|
113 |
+
"eval_steps_per_second": 0.442,
|
114 |
+
"step": 7
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.25,
|
118 |
+
"grad_norm": 0.599291017991319,
|
119 |
+
"learning_rate": 2e-05,
|
120 |
+
"loss": 1.2037,
|
121 |
+
"step": 8
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.25,
|
125 |
+
"eval_loss": 1.1734061241149902,
|
126 |
+
"eval_runtime": 56.6005,
|
127 |
+
"eval_samples_per_second": 3.534,
|
128 |
+
"eval_steps_per_second": 0.442,
|
129 |
+
"step": 8
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28125,
|
133 |
+
"grad_norm": 0.4952974010296138,
|
134 |
+
"learning_rate": 2e-05,
|
135 |
+
"loss": 1.226,
|
136 |
+
"step": 9
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.28125,
|
140 |
+
"eval_loss": 1.1502536535263062,
|
141 |
+
"eval_runtime": 56.7524,
|
142 |
+
"eval_samples_per_second": 3.524,
|
143 |
+
"eval_steps_per_second": 0.441,
|
144 |
+
"step": 9
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.3125,
|
148 |
+
"grad_norm": 0.4967350606769311,
|
149 |
+
"learning_rate": 2e-05,
|
150 |
+
"loss": 1.1613,
|
151 |
+
"step": 10
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.3125,
|
155 |
+
"eval_loss": 1.127350091934204,
|
156 |
+
"eval_runtime": 56.7569,
|
157 |
+
"eval_samples_per_second": 3.524,
|
158 |
+
"eval_steps_per_second": 0.44,
|
159 |
+
"step": 10
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.34375,
|
163 |
+
"grad_norm": 0.43644425188108293,
|
164 |
+
"learning_rate": 2e-05,
|
165 |
+
"loss": 1.2077,
|
166 |
+
"step": 11
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.34375,
|
170 |
+
"eval_loss": 1.104610562324524,
|
171 |
+
"eval_runtime": 56.607,
|
172 |
+
"eval_samples_per_second": 3.533,
|
173 |
+
"eval_steps_per_second": 0.442,
|
174 |
+
"step": 11
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.375,
|
178 |
+
"grad_norm": 0.4763392566533296,
|
179 |
+
"learning_rate": 2e-05,
|
180 |
+
"loss": 1.1593,
|
181 |
+
"step": 12
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.375,
|
185 |
+
"eval_loss": 1.0827140808105469,
|
186 |
+
"eval_runtime": 56.6548,
|
187 |
+
"eval_samples_per_second": 3.53,
|
188 |
+
"eval_steps_per_second": 0.441,
|
189 |
+
"step": 12
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.40625,
|
193 |
+
"grad_norm": 0.49138280391100253,
|
194 |
+
"learning_rate": 2e-05,
|
195 |
+
"loss": 1.1679,
|
196 |
+
"step": 13
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.40625,
|
200 |
+
"eval_loss": 1.0621232986450195,
|
201 |
+
"eval_runtime": 56.8147,
|
202 |
+
"eval_samples_per_second": 3.52,
|
203 |
+
"eval_steps_per_second": 0.44,
|
204 |
+
"step": 13
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.4375,
|
208 |
+
"grad_norm": 0.4305508696222477,
|
209 |
+
"learning_rate": 2e-05,
|
210 |
+
"loss": 1.0008,
|
211 |
+
"step": 14
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.4375,
|
215 |
+
"eval_loss": 1.0437134504318237,
|
216 |
+
"eval_runtime": 56.7306,
|
217 |
+
"eval_samples_per_second": 3.525,
|
218 |
+
"eval_steps_per_second": 0.441,
|
219 |
+
"step": 14
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.46875,
|
223 |
+
"grad_norm": 0.39438622708065774,
|
224 |
+
"learning_rate": 2e-05,
|
225 |
+
"loss": 1.1206,
|
226 |
+
"step": 15
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.46875,
|
230 |
+
"eval_loss": 1.0277280807495117,
|
231 |
+
"eval_runtime": 56.6499,
|
232 |
+
"eval_samples_per_second": 3.53,
|
233 |
+
"eval_steps_per_second": 0.441,
|
234 |
+
"step": 15
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.5,
|
238 |
+
"grad_norm": 0.40300919769454296,
|
239 |
+
"learning_rate": 2e-05,
|
240 |
+
"loss": 1.0501,
|
241 |
+
"step": 16
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.5,
|
245 |
+
"eval_loss": 1.0134528875350952,
|
246 |
+
"eval_runtime": 56.3333,
|
247 |
+
"eval_samples_per_second": 3.55,
|
248 |
+
"eval_steps_per_second": 0.444,
|
249 |
+
"step": 16
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.53125,
|
253 |
+
"grad_norm": 0.35230570754831836,
|
254 |
+
"learning_rate": 2e-05,
|
255 |
+
"loss": 1.0593,
|
256 |
+
"step": 17
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.53125,
|
260 |
+
"eval_loss": 1.0004419088363647,
|
261 |
+
"eval_runtime": 56.6019,
|
262 |
+
"eval_samples_per_second": 3.533,
|
263 |
+
"eval_steps_per_second": 0.442,
|
264 |
+
"step": 17
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.5625,
|
268 |
+
"grad_norm": 0.37606931260721715,
|
269 |
+
"learning_rate": 2e-05,
|
270 |
+
"loss": 1.0482,
|
271 |
+
"step": 18
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.5625,
|
275 |
+
"eval_loss": 0.9879937767982483,
|
276 |
+
"eval_runtime": 56.6945,
|
277 |
+
"eval_samples_per_second": 3.528,
|
278 |
+
"eval_steps_per_second": 0.441,
|
279 |
+
"step": 18
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.59375,
|
283 |
+
"grad_norm": 0.2941404563021841,
|
284 |
+
"learning_rate": 2e-05,
|
285 |
+
"loss": 0.9707,
|
286 |
+
"step": 19
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.59375,
|
290 |
+
"eval_loss": 0.976818859577179,
|
291 |
+
"eval_runtime": 56.6805,
|
292 |
+
"eval_samples_per_second": 3.529,
|
293 |
+
"eval_steps_per_second": 0.441,
|
294 |
+
"step": 19
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.625,
|
298 |
+
"grad_norm": 0.2958263397509482,
|
299 |
+
"learning_rate": 2e-05,
|
300 |
+
"loss": 1.091,
|
301 |
+
"step": 20
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.625,
|
305 |
+
"eval_loss": 0.9669834971427917,
|
306 |
+
"eval_runtime": 57.6231,
|
307 |
+
"eval_samples_per_second": 3.471,
|
308 |
+
"eval_steps_per_second": 0.434,
|
309 |
+
"step": 20
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.65625,
|
313 |
+
"grad_norm": 0.2485896802049987,
|
314 |
+
"learning_rate": 2e-05,
|
315 |
+
"loss": 1.0041,
|
316 |
+
"step": 21
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.65625,
|
320 |
+
"eval_loss": 0.9583450555801392,
|
321 |
+
"eval_runtime": 56.5142,
|
322 |
+
"eval_samples_per_second": 3.539,
|
323 |
+
"eval_steps_per_second": 0.442,
|
324 |
+
"step": 21
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.6875,
|
328 |
+
"grad_norm": 0.296994298254859,
|
329 |
+
"learning_rate": 2e-05,
|
330 |
+
"loss": 1.055,
|
331 |
+
"step": 22
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6875,
|
335 |
+
"eval_loss": 0.9502925276756287,
|
336 |
+
"eval_runtime": 56.6393,
|
337 |
+
"eval_samples_per_second": 3.531,
|
338 |
+
"eval_steps_per_second": 0.441,
|
339 |
+
"step": 22
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.71875,
|
343 |
+
"grad_norm": 0.2499735192340966,
|
344 |
+
"learning_rate": 2e-05,
|
345 |
+
"loss": 1.04,
|
346 |
+
"step": 23
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.71875,
|
350 |
+
"eval_loss": 0.9427899122238159,
|
351 |
+
"eval_runtime": 56.5467,
|
352 |
+
"eval_samples_per_second": 3.537,
|
353 |
+
"eval_steps_per_second": 0.442,
|
354 |
+
"step": 23
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.75,
|
358 |
+
"grad_norm": 0.23614468035916372,
|
359 |
+
"learning_rate": 2e-05,
|
360 |
+
"loss": 1.0387,
|
361 |
+
"step": 24
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.75,
|
365 |
+
"eval_loss": 0.9359552264213562,
|
366 |
+
"eval_runtime": 56.8371,
|
367 |
+
"eval_samples_per_second": 3.519,
|
368 |
+
"eval_steps_per_second": 0.44,
|
369 |
+
"step": 24
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.78125,
|
373 |
+
"grad_norm": 0.2597610358499704,
|
374 |
+
"learning_rate": 2e-05,
|
375 |
+
"loss": 0.9821,
|
376 |
+
"step": 25
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.78125,
|
380 |
+
"eval_loss": 0.929139256477356,
|
381 |
+
"eval_runtime": 56.659,
|
382 |
+
"eval_samples_per_second": 3.53,
|
383 |
+
"eval_steps_per_second": 0.441,
|
384 |
+
"step": 25
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.8125,
|
388 |
+
"grad_norm": 0.2483654904520099,
|
389 |
+
"learning_rate": 2e-05,
|
390 |
+
"loss": 1.0139,
|
391 |
+
"step": 26
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.8125,
|
395 |
+
"eval_loss": 0.9226005673408508,
|
396 |
+
"eval_runtime": 56.4669,
|
397 |
+
"eval_samples_per_second": 3.542,
|
398 |
+
"eval_steps_per_second": 0.443,
|
399 |
+
"step": 26
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.84375,
|
403 |
+
"grad_norm": 0.2814780741041167,
|
404 |
+
"learning_rate": 2e-05,
|
405 |
+
"loss": 0.9374,
|
406 |
+
"step": 27
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.84375,
|
410 |
+
"eval_loss": 0.9160022735595703,
|
411 |
+
"eval_runtime": 56.6558,
|
412 |
+
"eval_samples_per_second": 3.53,
|
413 |
+
"eval_steps_per_second": 0.441,
|
414 |
+
"step": 27
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.875,
|
418 |
+
"grad_norm": 0.29993540247195477,
|
419 |
+
"learning_rate": 2e-05,
|
420 |
+
"loss": 0.948,
|
421 |
+
"step": 28
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.875,
|
425 |
+
"eval_loss": 0.9092594981193542,
|
426 |
+
"eval_runtime": 56.743,
|
427 |
+
"eval_samples_per_second": 3.525,
|
428 |
+
"eval_steps_per_second": 0.441,
|
429 |
+
"step": 28
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.90625,
|
433 |
+
"grad_norm": 0.24302264777949295,
|
434 |
+
"learning_rate": 2e-05,
|
435 |
+
"loss": 0.9676,
|
436 |
+
"step": 29
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.90625,
|
440 |
+
"eval_loss": 0.9028491377830505,
|
441 |
+
"eval_runtime": 56.802,
|
442 |
+
"eval_samples_per_second": 3.521,
|
443 |
+
"eval_steps_per_second": 0.44,
|
444 |
+
"step": 29
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.9375,
|
448 |
+
"grad_norm": 0.28001197555170687,
|
449 |
+
"learning_rate": 2e-05,
|
450 |
+
"loss": 1.0044,
|
451 |
+
"step": 30
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.9375,
|
455 |
+
"eval_loss": 0.8969234228134155,
|
456 |
+
"eval_runtime": 56.8402,
|
457 |
+
"eval_samples_per_second": 3.519,
|
458 |
+
"eval_steps_per_second": 0.44,
|
459 |
+
"step": 30
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.96875,
|
463 |
+
"grad_norm": 0.26990828196944483,
|
464 |
+
"learning_rate": 2e-05,
|
465 |
+
"loss": 0.8417,
|
466 |
+
"step": 31
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.96875,
|
470 |
+
"eval_loss": 0.890943169593811,
|
471 |
+
"eval_runtime": 56.9987,
|
472 |
+
"eval_samples_per_second": 3.509,
|
473 |
+
"eval_steps_per_second": 0.439,
|
474 |
+
"step": 31
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 1.0,
|
478 |
+
"grad_norm": 0.25976007498641823,
|
479 |
+
"learning_rate": 2e-05,
|
480 |
+
"loss": 0.95,
|
481 |
+
"step": 32
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 1.0,
|
485 |
+
"eval_loss": 0.8852173686027527,
|
486 |
+
"eval_runtime": 56.722,
|
487 |
+
"eval_samples_per_second": 3.526,
|
488 |
+
"eval_steps_per_second": 0.441,
|
489 |
+
"step": 32
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.03125,
|
493 |
+
"grad_norm": 0.29530149620990226,
|
494 |
+
"learning_rate": 2e-05,
|
495 |
+
"loss": 0.9931,
|
496 |
+
"step": 33
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 1.03125,
|
500 |
+
"eval_loss": 0.8795143961906433,
|
501 |
+
"eval_runtime": 56.8541,
|
502 |
+
"eval_samples_per_second": 3.518,
|
503 |
+
"eval_steps_per_second": 0.44,
|
504 |
+
"step": 33
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.0625,
|
508 |
+
"grad_norm": 0.2759239362577793,
|
509 |
+
"learning_rate": 2e-05,
|
510 |
+
"loss": 0.9978,
|
511 |
+
"step": 34
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 1.0625,
|
515 |
+
"eval_loss": 0.8741766214370728,
|
516 |
+
"eval_runtime": 56.7708,
|
517 |
+
"eval_samples_per_second": 3.523,
|
518 |
+
"eval_steps_per_second": 0.44,
|
519 |
+
"step": 34
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.09375,
|
523 |
+
"grad_norm": 0.246531740102282,
|
524 |
+
"learning_rate": 2e-05,
|
525 |
+
"loss": 1.0163,
|
526 |
+
"step": 35
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 1.09375,
|
530 |
+
"eval_loss": 0.8691757321357727,
|
531 |
+
"eval_runtime": 56.8382,
|
532 |
+
"eval_samples_per_second": 3.519,
|
533 |
+
"eval_steps_per_second": 0.44,
|
534 |
+
"step": 35
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.125,
|
538 |
+
"grad_norm": 0.2646078522027086,
|
539 |
+
"learning_rate": 2e-05,
|
540 |
+
"loss": 0.971,
|
541 |
+
"step": 36
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.125,
|
545 |
+
"eval_loss": 0.8643682599067688,
|
546 |
+
"eval_runtime": 56.689,
|
547 |
+
"eval_samples_per_second": 3.528,
|
548 |
+
"eval_steps_per_second": 0.441,
|
549 |
+
"step": 36
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.15625,
|
553 |
+
"grad_norm": 0.2395171492146917,
|
554 |
+
"learning_rate": 2e-05,
|
555 |
+
"loss": 0.9227,
|
556 |
+
"step": 37
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 1.15625,
|
560 |
+
"eval_loss": 0.8600785136222839,
|
561 |
+
"eval_runtime": 56.72,
|
562 |
+
"eval_samples_per_second": 3.526,
|
563 |
+
"eval_steps_per_second": 0.441,
|
564 |
+
"step": 37
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 1.1875,
|
568 |
+
"grad_norm": 0.28215229152733834,
|
569 |
+
"learning_rate": 2e-05,
|
570 |
+
"loss": 0.9308,
|
571 |
+
"step": 38
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 1.1875,
|
575 |
+
"eval_loss": 0.8562959432601929,
|
576 |
+
"eval_runtime": 56.8289,
|
577 |
+
"eval_samples_per_second": 3.519,
|
578 |
+
"eval_steps_per_second": 0.44,
|
579 |
+
"step": 38
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.21875,
|
583 |
+
"grad_norm": 0.27116244597267625,
|
584 |
+
"learning_rate": 2e-05,
|
585 |
+
"loss": 0.9563,
|
586 |
+
"step": 39
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 1.21875,
|
590 |
+
"eval_loss": 0.8526366949081421,
|
591 |
+
"eval_runtime": 56.6829,
|
592 |
+
"eval_samples_per_second": 3.528,
|
593 |
+
"eval_steps_per_second": 0.441,
|
594 |
+
"step": 39
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.25,
|
598 |
+
"grad_norm": 0.2623711894386991,
|
599 |
+
"learning_rate": 2e-05,
|
600 |
+
"loss": 0.9535,
|
601 |
+
"step": 40
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.25,
|
605 |
+
"eval_loss": 0.8490655422210693,
|
606 |
+
"eval_runtime": 56.6874,
|
607 |
+
"eval_samples_per_second": 3.528,
|
608 |
+
"eval_steps_per_second": 0.441,
|
609 |
+
"step": 40
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.28125,
|
613 |
+
"grad_norm": 0.27251908150193377,
|
614 |
+
"learning_rate": 2e-05,
|
615 |
+
"loss": 0.9287,
|
616 |
+
"step": 41
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 1.28125,
|
620 |
+
"eval_loss": 0.8451938629150391,
|
621 |
+
"eval_runtime": 56.7117,
|
622 |
+
"eval_samples_per_second": 3.527,
|
623 |
+
"eval_steps_per_second": 0.441,
|
624 |
+
"step": 41
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 1.3125,
|
628 |
+
"grad_norm": 0.2642817191103673,
|
629 |
+
"learning_rate": 2e-05,
|
630 |
+
"loss": 0.9186,
|
631 |
+
"step": 42
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.3125,
|
635 |
+
"eval_loss": 0.8413894772529602,
|
636 |
+
"eval_runtime": 56.9042,
|
637 |
+
"eval_samples_per_second": 3.515,
|
638 |
+
"eval_steps_per_second": 0.439,
|
639 |
+
"step": 42
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.34375,
|
643 |
+
"grad_norm": 0.26857391288606197,
|
644 |
+
"learning_rate": 2e-05,
|
645 |
+
"loss": 0.8792,
|
646 |
+
"step": 43
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.34375,
|
650 |
+
"eval_loss": 0.8373947739601135,
|
651 |
+
"eval_runtime": 56.7211,
|
652 |
+
"eval_samples_per_second": 3.526,
|
653 |
+
"eval_steps_per_second": 0.441,
|
654 |
+
"step": 43
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.375,
|
658 |
+
"grad_norm": 0.2474531366673803,
|
659 |
+
"learning_rate": 2e-05,
|
660 |
+
"loss": 0.8965,
|
661 |
+
"step": 44
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.375,
|
665 |
+
"eval_loss": 0.8339560031890869,
|
666 |
+
"eval_runtime": 56.8277,
|
667 |
+
"eval_samples_per_second": 3.519,
|
668 |
+
"eval_steps_per_second": 0.44,
|
669 |
+
"step": 44
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.40625,
|
673 |
+
"grad_norm": 0.26467660282496797,
|
674 |
+
"learning_rate": 2e-05,
|
675 |
+
"loss": 0.8762,
|
676 |
+
"step": 45
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.40625,
|
680 |
+
"eval_loss": 0.8309465050697327,
|
681 |
+
"eval_runtime": 56.7019,
|
682 |
+
"eval_samples_per_second": 3.527,
|
683 |
+
"eval_steps_per_second": 0.441,
|
684 |
+
"step": 45
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 1.4375,
|
688 |
+
"grad_norm": 0.2652288034609541,
|
689 |
+
"learning_rate": 2e-05,
|
690 |
+
"loss": 0.9118,
|
691 |
+
"step": 46
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 1.4375,
|
695 |
+
"eval_loss": 0.8279169201850891,
|
696 |
+
"eval_runtime": 56.6271,
|
697 |
+
"eval_samples_per_second": 3.532,
|
698 |
+
"eval_steps_per_second": 0.441,
|
699 |
+
"step": 46
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.46875,
|
703 |
+
"grad_norm": 0.27355995161173785,
|
704 |
+
"learning_rate": 2e-05,
|
705 |
+
"loss": 0.9249,
|
706 |
+
"step": 47
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.46875,
|
710 |
+
"eval_loss": 0.8252391219139099,
|
711 |
+
"eval_runtime": 56.6323,
|
712 |
+
"eval_samples_per_second": 3.532,
|
713 |
+
"eval_steps_per_second": 0.441,
|
714 |
+
"step": 47
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 1.5,
|
718 |
+
"grad_norm": 0.2588399009432225,
|
719 |
+
"learning_rate": 2e-05,
|
720 |
+
"loss": 0.8359,
|
721 |
+
"step": 48
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.5,
|
725 |
+
"eval_loss": 0.8225956559181213,
|
726 |
+
"eval_runtime": 58.0142,
|
727 |
+
"eval_samples_per_second": 3.447,
|
728 |
+
"eval_steps_per_second": 0.431,
|
729 |
+
"step": 48
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.53125,
|
733 |
+
"grad_norm": 0.28116473918910634,
|
734 |
+
"learning_rate": 2e-05,
|
735 |
+
"loss": 0.846,
|
736 |
+
"step": 49
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 1.53125,
|
740 |
+
"eval_loss": 0.8198111057281494,
|
741 |
+
"eval_runtime": 56.6785,
|
742 |
+
"eval_samples_per_second": 3.529,
|
743 |
+
"eval_steps_per_second": 0.441,
|
744 |
+
"step": 49
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.5625,
|
748 |
+
"grad_norm": 0.30791508615928687,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.8364,
|
751 |
+
"step": 50
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.5625,
|
755 |
+
"eval_loss": 0.816419243812561,
|
756 |
+
"eval_runtime": 56.7867,
|
757 |
+
"eval_samples_per_second": 3.522,
|
758 |
+
"eval_steps_per_second": 0.44,
|
759 |
+
"step": 50
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.59375,
|
763 |
+
"grad_norm": 0.2635774938006065,
|
764 |
+
"learning_rate": 2e-05,
|
765 |
+
"loss": 0.8565,
|
766 |
+
"step": 51
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.59375,
|
770 |
+
"eval_loss": 0.8128839731216431,
|
771 |
+
"eval_runtime": 56.5904,
|
772 |
+
"eval_samples_per_second": 3.534,
|
773 |
+
"eval_steps_per_second": 0.442,
|
774 |
+
"step": 51
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 1.625,
|
778 |
+
"grad_norm": 0.25740594308086223,
|
779 |
+
"learning_rate": 2e-05,
|
780 |
+
"loss": 0.7573,
|
781 |
+
"step": 52
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.625,
|
785 |
+
"eval_loss": 0.8096449971199036,
|
786 |
+
"eval_runtime": 56.7381,
|
787 |
+
"eval_samples_per_second": 3.525,
|
788 |
+
"eval_steps_per_second": 0.441,
|
789 |
+
"step": 52
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.65625,
|
793 |
+
"grad_norm": 0.25917235006885775,
|
794 |
+
"learning_rate": 2e-05,
|
795 |
+
"loss": 0.8982,
|
796 |
+
"step": 53
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.65625,
|
800 |
+
"eval_loss": 0.8064478039741516,
|
801 |
+
"eval_runtime": 57.4343,
|
802 |
+
"eval_samples_per_second": 3.482,
|
803 |
+
"eval_steps_per_second": 0.435,
|
804 |
+
"step": 53
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 1.6875,
|
808 |
+
"grad_norm": 0.2831937064873763,
|
809 |
+
"learning_rate": 2e-05,
|
810 |
+
"loss": 0.8781,
|
811 |
+
"step": 54
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.6875,
|
815 |
+
"eval_loss": 0.8034397959709167,
|
816 |
+
"eval_runtime": 56.8346,
|
817 |
+
"eval_samples_per_second": 3.519,
|
818 |
+
"eval_steps_per_second": 0.44,
|
819 |
+
"step": 54
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.71875,
|
823 |
+
"grad_norm": 0.2863024186152095,
|
824 |
+
"learning_rate": 2e-05,
|
825 |
+
"loss": 0.8861,
|
826 |
+
"step": 55
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.71875,
|
830 |
+
"eval_loss": 0.800960898399353,
|
831 |
+
"eval_runtime": 56.7424,
|
832 |
+
"eval_samples_per_second": 3.525,
|
833 |
+
"eval_steps_per_second": 0.441,
|
834 |
+
"step": 55
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 1.75,
|
838 |
+
"grad_norm": 0.28320211213029406,
|
839 |
+
"learning_rate": 2e-05,
|
840 |
+
"loss": 0.9514,
|
841 |
+
"step": 56
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.75,
|
845 |
+
"eval_loss": 0.7988448143005371,
|
846 |
+
"eval_runtime": 57.0405,
|
847 |
+
"eval_samples_per_second": 3.506,
|
848 |
+
"eval_steps_per_second": 0.438,
|
849 |
+
"step": 56
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.78125,
|
853 |
+
"grad_norm": 0.3204132014824286,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.8947,
|
856 |
+
"step": 57
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.78125,
|
860 |
+
"eval_loss": 0.7971951365470886,
|
861 |
+
"eval_runtime": 57.1716,
|
862 |
+
"eval_samples_per_second": 3.498,
|
863 |
+
"eval_steps_per_second": 0.437,
|
864 |
+
"step": 57
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 1.8125,
|
868 |
+
"grad_norm": 0.29386668880511096,
|
869 |
+
"learning_rate": 2e-05,
|
870 |
+
"loss": 0.9125,
|
871 |
+
"step": 58
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.8125,
|
875 |
+
"eval_loss": 0.7956165075302124,
|
876 |
+
"eval_runtime": 57.3457,
|
877 |
+
"eval_samples_per_second": 3.488,
|
878 |
+
"eval_steps_per_second": 0.436,
|
879 |
+
"step": 58
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.84375,
|
883 |
+
"grad_norm": 0.31091076146467406,
|
884 |
+
"learning_rate": 2e-05,
|
885 |
+
"loss": 0.8638,
|
886 |
+
"step": 59
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 1.84375,
|
890 |
+
"eval_loss": 0.7935267090797424,
|
891 |
+
"eval_runtime": 57.373,
|
892 |
+
"eval_samples_per_second": 3.486,
|
893 |
+
"eval_steps_per_second": 0.436,
|
894 |
+
"step": 59
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 1.875,
|
898 |
+
"grad_norm": 0.28779917523565474,
|
899 |
+
"learning_rate": 2e-05,
|
900 |
+
"loss": 0.9113,
|
901 |
+
"step": 60
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.875,
|
905 |
+
"eval_loss": 0.7914787530899048,
|
906 |
+
"eval_runtime": 57.2668,
|
907 |
+
"eval_samples_per_second": 3.492,
|
908 |
+
"eval_steps_per_second": 0.437,
|
909 |
+
"step": 60
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.90625,
|
913 |
+
"grad_norm": 0.31820258275619673,
|
914 |
+
"learning_rate": 2e-05,
|
915 |
+
"loss": 0.8113,
|
916 |
+
"step": 61
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 1.90625,
|
920 |
+
"eval_loss": 0.788929283618927,
|
921 |
+
"eval_runtime": 57.2581,
|
922 |
+
"eval_samples_per_second": 3.493,
|
923 |
+
"eval_steps_per_second": 0.437,
|
924 |
+
"step": 61
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 1.9375,
|
928 |
+
"grad_norm": 0.30186200117869055,
|
929 |
+
"learning_rate": 2e-05,
|
930 |
+
"loss": 0.8685,
|
931 |
+
"step": 62
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 1.9375,
|
935 |
+
"eval_loss": 0.7862411737442017,
|
936 |
+
"eval_runtime": 57.2688,
|
937 |
+
"eval_samples_per_second": 3.492,
|
938 |
+
"eval_steps_per_second": 0.437,
|
939 |
+
"step": 62
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.96875,
|
943 |
+
"grad_norm": 0.27549296702686904,
|
944 |
+
"learning_rate": 2e-05,
|
945 |
+
"loss": 0.911,
|
946 |
+
"step": 63
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.96875,
|
950 |
+
"eval_loss": 0.7838772535324097,
|
951 |
+
"eval_runtime": 57.5102,
|
952 |
+
"eval_samples_per_second": 3.478,
|
953 |
+
"eval_steps_per_second": 0.435,
|
954 |
+
"step": 63
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.0,
|
958 |
+
"grad_norm": 0.29444542350221403,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.8877,
|
961 |
+
"step": 64
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.0,
|
965 |
+
"eval_loss": 0.7814672589302063,
|
966 |
+
"eval_runtime": 57.3342,
|
967 |
+
"eval_samples_per_second": 3.488,
|
968 |
+
"eval_steps_per_second": 0.436,
|
969 |
+
"step": 64
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 2.03125,
|
973 |
+
"grad_norm": 0.32976362380066954,
|
974 |
+
"learning_rate": 2e-05,
|
975 |
+
"loss": 0.836,
|
976 |
+
"step": 65
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 2.03125,
|
980 |
+
"eval_loss": 0.7788661122322083,
|
981 |
+
"eval_runtime": 57.6392,
|
982 |
+
"eval_samples_per_second": 3.47,
|
983 |
+
"eval_steps_per_second": 0.434,
|
984 |
+
"step": 65
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 2.0625,
|
988 |
+
"grad_norm": 0.3091109685624876,
|
989 |
+
"learning_rate": 2e-05,
|
990 |
+
"loss": 0.8565,
|
991 |
+
"step": 66
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 2.0625,
|
995 |
+
"eval_loss": 0.7769085764884949,
|
996 |
+
"eval_runtime": 57.2017,
|
997 |
+
"eval_samples_per_second": 3.496,
|
998 |
+
"eval_steps_per_second": 0.437,
|
999 |
+
"step": 66
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.09375,
|
1003 |
+
"grad_norm": 0.3011651623444141,
|
1004 |
+
"learning_rate": 2e-05,
|
1005 |
+
"loss": 0.8265,
|
1006 |
+
"step": 67
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 2.09375,
|
1010 |
+
"eval_loss": 0.7751161456108093,
|
1011 |
+
"eval_runtime": 57.4125,
|
1012 |
+
"eval_samples_per_second": 3.484,
|
1013 |
+
"eval_steps_per_second": 0.435,
|
1014 |
+
"step": 67
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 2.125,
|
1018 |
+
"grad_norm": 0.28278958612422994,
|
1019 |
+
"learning_rate": 2e-05,
|
1020 |
+
"loss": 0.8893,
|
1021 |
+
"step": 68
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 2.125,
|
1025 |
+
"eval_loss": 0.7736042737960815,
|
1026 |
+
"eval_runtime": 57.2826,
|
1027 |
+
"eval_samples_per_second": 3.491,
|
1028 |
+
"eval_steps_per_second": 0.436,
|
1029 |
+
"step": 68
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.15625,
|
1033 |
+
"grad_norm": 0.30212533045014006,
|
1034 |
+
"learning_rate": 2e-05,
|
1035 |
+
"loss": 0.8256,
|
1036 |
+
"step": 69
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 2.15625,
|
1040 |
+
"eval_loss": 0.7718043327331543,
|
1041 |
+
"eval_runtime": 59.4842,
|
1042 |
+
"eval_samples_per_second": 3.362,
|
1043 |
+
"eval_steps_per_second": 0.42,
|
1044 |
+
"step": 69
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 2.1875,
|
1048 |
+
"grad_norm": 0.32231592883907934,
|
1049 |
+
"learning_rate": 2e-05,
|
1050 |
+
"loss": 0.7754,
|
1051 |
+
"step": 70
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 2.1875,
|
1055 |
+
"eval_loss": 0.7697712779045105,
|
1056 |
+
"eval_runtime": 57.2127,
|
1057 |
+
"eval_samples_per_second": 3.496,
|
1058 |
+
"eval_steps_per_second": 0.437,
|
1059 |
+
"step": 70
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.21875,
|
1063 |
+
"grad_norm": 0.29880148326318595,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.864,
|
1066 |
+
"step": 71
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.21875,
|
1070 |
+
"eval_loss": 0.7679712176322937,
|
1071 |
+
"eval_runtime": 57.1052,
|
1072 |
+
"eval_samples_per_second": 3.502,
|
1073 |
+
"eval_steps_per_second": 0.438,
|
1074 |
+
"step": 71
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 2.25,
|
1078 |
+
"grad_norm": 0.30389759178870646,
|
1079 |
+
"learning_rate": 2e-05,
|
1080 |
+
"loss": 0.7831,
|
1081 |
+
"step": 72
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 2.25,
|
1085 |
+
"eval_loss": 0.7662644386291504,
|
1086 |
+
"eval_runtime": 57.37,
|
1087 |
+
"eval_samples_per_second": 3.486,
|
1088 |
+
"eval_steps_per_second": 0.436,
|
1089 |
+
"step": 72
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 2.28125,
|
1093 |
+
"grad_norm": 0.3424258847516451,
|
1094 |
+
"learning_rate": 2e-05,
|
1095 |
+
"loss": 0.8311,
|
1096 |
+
"step": 73
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 2.28125,
|
1100 |
+
"eval_loss": 0.7646127343177795,
|
1101 |
+
"eval_runtime": 57.1884,
|
1102 |
+
"eval_samples_per_second": 3.497,
|
1103 |
+
"eval_steps_per_second": 0.437,
|
1104 |
+
"step": 73
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 2.3125,
|
1108 |
+
"grad_norm": 0.2831654885374943,
|
1109 |
+
"learning_rate": 2e-05,
|
1110 |
+
"loss": 0.8261,
|
1111 |
+
"step": 74
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 2.3125,
|
1115 |
+
"eval_loss": 0.7631255388259888,
|
1116 |
+
"eval_runtime": 57.4573,
|
1117 |
+
"eval_samples_per_second": 3.481,
|
1118 |
+
"eval_steps_per_second": 0.435,
|
1119 |
+
"step": 74
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 2.34375,
|
1123 |
+
"grad_norm": 0.29894569677081223,
|
1124 |
+
"learning_rate": 2e-05,
|
1125 |
+
"loss": 0.8801,
|
1126 |
+
"step": 75
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 2.34375,
|
1130 |
+
"eval_loss": 0.7617875933647156,
|
1131 |
+
"eval_runtime": 57.1641,
|
1132 |
+
"eval_samples_per_second": 3.499,
|
1133 |
+
"eval_steps_per_second": 0.437,
|
1134 |
+
"step": 75
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 2.375,
|
1138 |
+
"grad_norm": 0.3030991848050202,
|
1139 |
+
"learning_rate": 2e-05,
|
1140 |
+
"loss": 0.7921,
|
1141 |
+
"step": 76
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 2.375,
|
1145 |
+
"eval_loss": 0.7605040073394775,
|
1146 |
+
"eval_runtime": 57.0991,
|
1147 |
+
"eval_samples_per_second": 3.503,
|
1148 |
+
"eval_steps_per_second": 0.438,
|
1149 |
+
"step": 76
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 2.40625,
|
1153 |
+
"grad_norm": 0.30216971620226146,
|
1154 |
+
"learning_rate": 2e-05,
|
1155 |
+
"loss": 0.8527,
|
1156 |
+
"step": 77
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 2.40625,
|
1160 |
+
"eval_loss": 0.7591890096664429,
|
1161 |
+
"eval_runtime": 58.6087,
|
1162 |
+
"eval_samples_per_second": 3.412,
|
1163 |
+
"eval_steps_per_second": 0.427,
|
1164 |
+
"step": 77
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.4375,
|
1168 |
+
"grad_norm": 0.34907486616204614,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.841,
|
1171 |
+
"step": 78
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.4375,
|
1175 |
+
"eval_loss": 0.7577351331710815,
|
1176 |
+
"eval_runtime": 59.509,
|
1177 |
+
"eval_samples_per_second": 3.361,
|
1178 |
+
"eval_steps_per_second": 0.42,
|
1179 |
+
"step": 78
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 2.46875,
|
1183 |
+
"grad_norm": 0.3356288667630128,
|
1184 |
+
"learning_rate": 2e-05,
|
1185 |
+
"loss": 0.8417,
|
1186 |
+
"step": 79
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 2.46875,
|
1190 |
+
"eval_loss": 0.7571098208427429,
|
1191 |
+
"eval_runtime": 57.4972,
|
1192 |
+
"eval_samples_per_second": 3.478,
|
1193 |
+
"eval_steps_per_second": 0.435,
|
1194 |
+
"step": 79
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 2.5,
|
1198 |
+
"grad_norm": 0.3547770718977253,
|
1199 |
+
"learning_rate": 2e-05,
|
1200 |
+
"loss": 0.8865,
|
1201 |
+
"step": 80
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 2.5,
|
1205 |
+
"eval_loss": 0.7565757632255554,
|
1206 |
+
"eval_runtime": 57.4262,
|
1207 |
+
"eval_samples_per_second": 3.483,
|
1208 |
+
"eval_steps_per_second": 0.435,
|
1209 |
+
"step": 80
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 2.53125,
|
1213 |
+
"grad_norm": 0.36400071548952273,
|
1214 |
+
"learning_rate": 2e-05,
|
1215 |
+
"loss": 0.8201,
|
1216 |
+
"step": 81
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 2.53125,
|
1220 |
+
"eval_loss": 0.7553688287734985,
|
1221 |
+
"eval_runtime": 59.6772,
|
1222 |
+
"eval_samples_per_second": 3.351,
|
1223 |
+
"eval_steps_per_second": 0.419,
|
1224 |
+
"step": 81
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 2.5625,
|
1228 |
+
"grad_norm": 0.32432854183732784,
|
1229 |
+
"learning_rate": 2e-05,
|
1230 |
+
"loss": 0.8705,
|
1231 |
+
"step": 82
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 2.5625,
|
1235 |
+
"eval_loss": 0.7540337443351746,
|
1236 |
+
"eval_runtime": 58.1967,
|
1237 |
+
"eval_samples_per_second": 3.437,
|
1238 |
+
"eval_steps_per_second": 0.43,
|
1239 |
+
"step": 82
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 2.59375,
|
1243 |
+
"grad_norm": 0.3367161155473714,
|
1244 |
+
"learning_rate": 2e-05,
|
1245 |
+
"loss": 0.8225,
|
1246 |
+
"step": 83
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 2.59375,
|
1250 |
+
"eval_loss": 0.752601683139801,
|
1251 |
+
"eval_runtime": 59.728,
|
1252 |
+
"eval_samples_per_second": 3.349,
|
1253 |
+
"eval_steps_per_second": 0.419,
|
1254 |
+
"step": 83
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 2.625,
|
1258 |
+
"grad_norm": 0.3542073894911913,
|
1259 |
+
"learning_rate": 2e-05,
|
1260 |
+
"loss": 0.7887,
|
1261 |
+
"step": 84
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 2.625,
|
1265 |
+
"eval_loss": 0.750983715057373,
|
1266 |
+
"eval_runtime": 58.2468,
|
1267 |
+
"eval_samples_per_second": 3.434,
|
1268 |
+
"eval_steps_per_second": 0.429,
|
1269 |
+
"step": 84
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.65625,
|
1273 |
+
"grad_norm": 0.3387577198880303,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.7594,
|
1276 |
+
"step": 85
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.65625,
|
1280 |
+
"eval_loss": 0.7495383620262146,
|
1281 |
+
"eval_runtime": 58.3457,
|
1282 |
+
"eval_samples_per_second": 3.428,
|
1283 |
+
"eval_steps_per_second": 0.428,
|
1284 |
+
"step": 85
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 2.6875,
|
1288 |
+
"grad_norm": 0.381221735797731,
|
1289 |
+
"learning_rate": 2e-05,
|
1290 |
+
"loss": 0.7911,
|
1291 |
+
"step": 86
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 2.6875,
|
1295 |
+
"eval_loss": 0.7477438449859619,
|
1296 |
+
"eval_runtime": 58.0584,
|
1297 |
+
"eval_samples_per_second": 3.445,
|
1298 |
+
"eval_steps_per_second": 0.431,
|
1299 |
+
"step": 86
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 2.71875,
|
1303 |
+
"grad_norm": 0.3782280426863171,
|
1304 |
+
"learning_rate": 2e-05,
|
1305 |
+
"loss": 0.8115,
|
1306 |
+
"step": 87
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 2.71875,
|
1310 |
+
"eval_loss": 0.7464295029640198,
|
1311 |
+
"eval_runtime": 57.9835,
|
1312 |
+
"eval_samples_per_second": 3.449,
|
1313 |
+
"eval_steps_per_second": 0.431,
|
1314 |
+
"step": 87
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 2.75,
|
1318 |
+
"grad_norm": 0.3751127153118298,
|
1319 |
+
"learning_rate": 2e-05,
|
1320 |
+
"loss": 0.8896,
|
1321 |
+
"step": 88
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 2.75,
|
1325 |
+
"eval_loss": 0.7451103329658508,
|
1326 |
+
"eval_runtime": 58.1947,
|
1327 |
+
"eval_samples_per_second": 3.437,
|
1328 |
+
"eval_steps_per_second": 0.43,
|
1329 |
+
"step": 88
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 2.78125,
|
1333 |
+
"grad_norm": 0.3580034870691801,
|
1334 |
+
"learning_rate": 2e-05,
|
1335 |
+
"loss": 0.7964,
|
1336 |
+
"step": 89
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 2.78125,
|
1340 |
+
"eval_loss": 0.744097113609314,
|
1341 |
+
"eval_runtime": 58.1644,
|
1342 |
+
"eval_samples_per_second": 3.439,
|
1343 |
+
"eval_steps_per_second": 0.43,
|
1344 |
+
"step": 89
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 2.8125,
|
1348 |
+
"grad_norm": 0.3630926811819107,
|
1349 |
+
"learning_rate": 2e-05,
|
1350 |
+
"loss": 0.848,
|
1351 |
+
"step": 90
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 2.8125,
|
1355 |
+
"eval_loss": 0.7432359457015991,
|
1356 |
+
"eval_runtime": 58.0811,
|
1357 |
+
"eval_samples_per_second": 3.443,
|
1358 |
+
"eval_steps_per_second": 0.43,
|
1359 |
+
"step": 90
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 2.84375,
|
1363 |
+
"grad_norm": 0.3668484035124972,
|
1364 |
+
"learning_rate": 2e-05,
|
1365 |
+
"loss": 0.7444,
|
1366 |
+
"step": 91
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 2.84375,
|
1370 |
+
"eval_loss": 0.7424789667129517,
|
1371 |
+
"eval_runtime": 59.6811,
|
1372 |
+
"eval_samples_per_second": 3.351,
|
1373 |
+
"eval_steps_per_second": 0.419,
|
1374 |
+
"step": 91
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.875,
|
1378 |
+
"grad_norm": 0.37526030248163283,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.8381,
|
1381 |
+
"step": 92
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.875,
|
1385 |
+
"eval_loss": 0.7417113780975342,
|
1386 |
+
"eval_runtime": 58.1209,
|
1387 |
+
"eval_samples_per_second": 3.441,
|
1388 |
+
"eval_steps_per_second": 0.43,
|
1389 |
+
"step": 92
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 2.90625,
|
1393 |
+
"grad_norm": 0.36285898832422037,
|
1394 |
+
"learning_rate": 2e-05,
|
1395 |
+
"loss": 0.7797,
|
1396 |
+
"step": 93
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 2.90625,
|
1400 |
+
"eval_loss": 0.7411203980445862,
|
1401 |
+
"eval_runtime": 58.3212,
|
1402 |
+
"eval_samples_per_second": 3.429,
|
1403 |
+
"eval_steps_per_second": 0.429,
|
1404 |
+
"step": 93
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 2.9375,
|
1408 |
+
"grad_norm": 0.39983168875602654,
|
1409 |
+
"learning_rate": 2e-05,
|
1410 |
+
"loss": 0.8571,
|
1411 |
+
"step": 94
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 2.9375,
|
1415 |
+
"eval_loss": 0.7402496933937073,
|
1416 |
+
"eval_runtime": 58.0746,
|
1417 |
+
"eval_samples_per_second": 3.444,
|
1418 |
+
"eval_steps_per_second": 0.43,
|
1419 |
+
"step": 94
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 2.96875,
|
1423 |
+
"grad_norm": 0.3697896026052261,
|
1424 |
+
"learning_rate": 2e-05,
|
1425 |
+
"loss": 0.7917,
|
1426 |
+
"step": 95
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 2.96875,
|
1430 |
+
"eval_loss": 0.7398749589920044,
|
1431 |
+
"eval_runtime": 59.8008,
|
1432 |
+
"eval_samples_per_second": 3.344,
|
1433 |
+
"eval_steps_per_second": 0.418,
|
1434 |
+
"step": 95
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 3.0,
|
1438 |
+
"grad_norm": 0.39419135002625816,
|
1439 |
+
"learning_rate": 2e-05,
|
1440 |
+
"loss": 0.7987,
|
1441 |
+
"step": 96
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 3.0,
|
1445 |
+
"eval_loss": 0.7384353876113892,
|
1446 |
+
"eval_runtime": 58.3389,
|
1447 |
+
"eval_samples_per_second": 3.428,
|
1448 |
+
"eval_steps_per_second": 0.429,
|
1449 |
+
"step": 96
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 3.03125,
|
1453 |
+
"grad_norm": 0.40732207424611727,
|
1454 |
+
"learning_rate": 2e-05,
|
1455 |
+
"loss": 0.7205,
|
1456 |
+
"step": 97
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 3.03125,
|
1460 |
+
"eval_loss": 0.73604416847229,
|
1461 |
+
"eval_runtime": 58.2114,
|
1462 |
+
"eval_samples_per_second": 3.436,
|
1463 |
+
"eval_steps_per_second": 0.429,
|
1464 |
+
"step": 97
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 3.0625,
|
1468 |
+
"grad_norm": 0.3641635271623762,
|
1469 |
+
"learning_rate": 2e-05,
|
1470 |
+
"loss": 0.8062,
|
1471 |
+
"step": 98
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 3.0625,
|
1475 |
+
"eval_loss": 0.7333144545555115,
|
1476 |
+
"eval_runtime": 59.7484,
|
1477 |
+
"eval_samples_per_second": 3.347,
|
1478 |
+
"eval_steps_per_second": 0.418,
|
1479 |
+
"step": 98
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 3.09375,
|
1483 |
+
"grad_norm": 0.3556866449584765,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.7681,
|
1486 |
+
"step": 99
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 3.09375,
|
1490 |
+
"eval_loss": 0.7306910157203674,
|
1491 |
+
"eval_runtime": 58.141,
|
1492 |
+
"eval_samples_per_second": 3.44,
|
1493 |
+
"eval_steps_per_second": 0.43,
|
1494 |
+
"step": 99
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 3.125,
|
1498 |
+
"grad_norm": 0.3826129743685834,
|
1499 |
+
"learning_rate": 2e-05,
|
1500 |
+
"loss": 0.7961,
|
1501 |
+
"step": 100
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 3.125,
|
1505 |
+
"eval_loss": 0.7283279895782471,
|
1506 |
+
"eval_runtime": 58.1482,
|
1507 |
+
"eval_samples_per_second": 3.439,
|
1508 |
+
"eval_steps_per_second": 0.43,
|
1509 |
+
"step": 100
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 3.15625,
|
1513 |
+
"grad_norm": 0.35166540759020914,
|
1514 |
+
"learning_rate": 2e-05,
|
1515 |
+
"loss": 0.7382,
|
1516 |
+
"step": 101
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 3.15625,
|
1520 |
+
"eval_loss": 0.7267993688583374,
|
1521 |
+
"eval_runtime": 57.8007,
|
1522 |
+
"eval_samples_per_second": 3.46,
|
1523 |
+
"eval_steps_per_second": 0.433,
|
1524 |
+
"step": 101
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 3.1875,
|
1528 |
+
"grad_norm": 0.38414476136018477,
|
1529 |
+
"learning_rate": 2e-05,
|
1530 |
+
"loss": 0.7999,
|
1531 |
+
"step": 102
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 3.1875,
|
1535 |
+
"eval_loss": 0.7261015176773071,
|
1536 |
+
"eval_runtime": 57.9723,
|
1537 |
+
"eval_samples_per_second": 3.45,
|
1538 |
+
"eval_steps_per_second": 0.431,
|
1539 |
+
"step": 102
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 3.21875,
|
1543 |
+
"grad_norm": 0.40218377868187477,
|
1544 |
+
"learning_rate": 2e-05,
|
1545 |
+
"loss": 0.8115,
|
1546 |
+
"step": 103
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 3.21875,
|
1550 |
+
"eval_loss": 0.7257917523384094,
|
1551 |
+
"eval_runtime": 58.0394,
|
1552 |
+
"eval_samples_per_second": 3.446,
|
1553 |
+
"eval_steps_per_second": 0.431,
|
1554 |
+
"step": 103
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 3.25,
|
1558 |
+
"grad_norm": 0.41934721904445194,
|
1559 |
+
"learning_rate": 2e-05,
|
1560 |
+
"loss": 0.7228,
|
1561 |
+
"step": 104
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 3.25,
|
1565 |
+
"eval_loss": 0.7251278758049011,
|
1566 |
+
"eval_runtime": 59.2828,
|
1567 |
+
"eval_samples_per_second": 3.374,
|
1568 |
+
"eval_steps_per_second": 0.422,
|
1569 |
+
"step": 104
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 3.28125,
|
1573 |
+
"grad_norm": 0.3882012129329853,
|
1574 |
+
"learning_rate": 2e-05,
|
1575 |
+
"loss": 0.7658,
|
1576 |
+
"step": 105
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 3.28125,
|
1580 |
+
"eval_loss": 0.724635899066925,
|
1581 |
+
"eval_runtime": 59.0543,
|
1582 |
+
"eval_samples_per_second": 3.387,
|
1583 |
+
"eval_steps_per_second": 0.423,
|
1584 |
+
"step": 105
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 3.3125,
|
1588 |
+
"grad_norm": 0.4068559748805906,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.7977,
|
1591 |
+
"step": 106
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 3.3125,
|
1595 |
+
"eval_loss": 0.7242235541343689,
|
1596 |
+
"eval_runtime": 58.5527,
|
1597 |
+
"eval_samples_per_second": 3.416,
|
1598 |
+
"eval_steps_per_second": 0.427,
|
1599 |
+
"step": 106
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 3.34375,
|
1603 |
+
"grad_norm": 0.4620335365938039,
|
1604 |
+
"learning_rate": 2e-05,
|
1605 |
+
"loss": 0.7015,
|
1606 |
+
"step": 107
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 3.34375,
|
1610 |
+
"eval_loss": 0.7226566076278687,
|
1611 |
+
"eval_runtime": 58.8135,
|
1612 |
+
"eval_samples_per_second": 3.401,
|
1613 |
+
"eval_steps_per_second": 0.425,
|
1614 |
+
"step": 107
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 3.375,
|
1618 |
+
"grad_norm": 0.4009314815042761,
|
1619 |
+
"learning_rate": 2e-05,
|
1620 |
+
"loss": 0.7488,
|
1621 |
+
"step": 108
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 3.375,
|
1625 |
+
"eval_loss": 0.7213454246520996,
|
1626 |
+
"eval_runtime": 58.735,
|
1627 |
+
"eval_samples_per_second": 3.405,
|
1628 |
+
"eval_steps_per_second": 0.426,
|
1629 |
+
"step": 108
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 3.40625,
|
1633 |
+
"grad_norm": 0.456822567760836,
|
1634 |
+
"learning_rate": 2e-05,
|
1635 |
+
"loss": 0.7307,
|
1636 |
+
"step": 109
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 3.40625,
|
1640 |
+
"eval_loss": 0.719496488571167,
|
1641 |
+
"eval_runtime": 58.9211,
|
1642 |
+
"eval_samples_per_second": 3.394,
|
1643 |
+
"eval_steps_per_second": 0.424,
|
1644 |
+
"step": 109
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 3.4375,
|
1648 |
+
"grad_norm": 0.45520197938839,
|
1649 |
+
"learning_rate": 2e-05,
|
1650 |
+
"loss": 0.7348,
|
1651 |
+
"step": 110
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 3.4375,
|
1655 |
+
"eval_loss": 0.7171263098716736,
|
1656 |
+
"eval_runtime": 58.9274,
|
1657 |
+
"eval_samples_per_second": 3.394,
|
1658 |
+
"eval_steps_per_second": 0.424,
|
1659 |
+
"step": 110
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 3.46875,
|
1663 |
+
"grad_norm": 0.4421606621837213,
|
1664 |
+
"learning_rate": 2e-05,
|
1665 |
+
"loss": 0.8011,
|
1666 |
+
"step": 111
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 3.46875,
|
1670 |
+
"eval_loss": 0.7155402898788452,
|
1671 |
+
"eval_runtime": 58.4009,
|
1672 |
+
"eval_samples_per_second": 3.425,
|
1673 |
+
"eval_steps_per_second": 0.428,
|
1674 |
+
"step": 111
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 3.5,
|
1678 |
+
"grad_norm": 0.4111011701354251,
|
1679 |
+
"learning_rate": 2e-05,
|
1680 |
+
"loss": 0.7829,
|
1681 |
+
"step": 112
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 3.5,
|
1685 |
+
"eval_loss": 0.714958667755127,
|
1686 |
+
"eval_runtime": 58.3143,
|
1687 |
+
"eval_samples_per_second": 3.43,
|
1688 |
+
"eval_steps_per_second": 0.429,
|
1689 |
+
"step": 112
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.53125,
|
1693 |
+
"grad_norm": 0.40366265866888357,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.8596,
|
1696 |
+
"step": 113
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.53125,
|
1700 |
+
"eval_loss": 0.7153159976005554,
|
1701 |
+
"eval_runtime": 58.5749,
|
1702 |
+
"eval_samples_per_second": 3.414,
|
1703 |
+
"eval_steps_per_second": 0.427,
|
1704 |
+
"step": 113
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 3.5625,
|
1708 |
+
"grad_norm": 0.44914251592864773,
|
1709 |
+
"learning_rate": 2e-05,
|
1710 |
+
"loss": 0.7268,
|
1711 |
+
"step": 114
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 3.5625,
|
1715 |
+
"eval_loss": 0.7159590721130371,
|
1716 |
+
"eval_runtime": 58.6872,
|
1717 |
+
"eval_samples_per_second": 3.408,
|
1718 |
+
"eval_steps_per_second": 0.426,
|
1719 |
+
"step": 114
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 3.59375,
|
1723 |
+
"grad_norm": 0.4062399312752312,
|
1724 |
+
"learning_rate": 2e-05,
|
1725 |
+
"loss": 0.7875,
|
1726 |
+
"step": 115
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 3.59375,
|
1730 |
+
"eval_loss": 0.7165355086326599,
|
1731 |
+
"eval_runtime": 58.4703,
|
1732 |
+
"eval_samples_per_second": 3.421,
|
1733 |
+
"eval_steps_per_second": 0.428,
|
1734 |
+
"step": 115
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 3.625,
|
1738 |
+
"grad_norm": 0.44817350106485787,
|
1739 |
+
"learning_rate": 2e-05,
|
1740 |
+
"loss": 0.7623,
|
1741 |
+
"step": 116
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 3.625,
|
1745 |
+
"eval_loss": 0.716560423374176,
|
1746 |
+
"eval_runtime": 58.5904,
|
1747 |
+
"eval_samples_per_second": 3.414,
|
1748 |
+
"eval_steps_per_second": 0.427,
|
1749 |
+
"step": 116
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 3.65625,
|
1753 |
+
"grad_norm": 0.4309671248224914,
|
1754 |
+
"learning_rate": 2e-05,
|
1755 |
+
"loss": 0.7604,
|
1756 |
+
"step": 117
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 3.65625,
|
1760 |
+
"eval_loss": 0.7165713310241699,
|
1761 |
+
"eval_runtime": 58.5214,
|
1762 |
+
"eval_samples_per_second": 3.418,
|
1763 |
+
"eval_steps_per_second": 0.427,
|
1764 |
+
"step": 117
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 3.6875,
|
1768 |
+
"grad_norm": 0.44823929530189277,
|
1769 |
+
"learning_rate": 2e-05,
|
1770 |
+
"loss": 0.7751,
|
1771 |
+
"step": 118
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 3.6875,
|
1775 |
+
"eval_loss": 0.7170334458351135,
|
1776 |
+
"eval_runtime": 58.7428,
|
1777 |
+
"eval_samples_per_second": 3.405,
|
1778 |
+
"eval_steps_per_second": 0.426,
|
1779 |
+
"step": 118
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 3.71875,
|
1783 |
+
"grad_norm": 0.4369363559974751,
|
1784 |
+
"learning_rate": 2e-05,
|
1785 |
+
"loss": 0.8321,
|
1786 |
+
"step": 119
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 3.71875,
|
1790 |
+
"eval_loss": 0.7169127464294434,
|
1791 |
+
"eval_runtime": 58.6794,
|
1792 |
+
"eval_samples_per_second": 3.408,
|
1793 |
+
"eval_steps_per_second": 0.426,
|
1794 |
+
"step": 119
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.75,
|
1798 |
+
"grad_norm": 0.43105130939689645,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.7722,
|
1801 |
+
"step": 120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.75,
|
1805 |
+
"eval_loss": 0.7162806987762451,
|
1806 |
+
"eval_runtime": 58.7674,
|
1807 |
+
"eval_samples_per_second": 3.403,
|
1808 |
+
"eval_steps_per_second": 0.425,
|
1809 |
+
"step": 120
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 3.78125,
|
1813 |
+
"grad_norm": 0.43789804607163635,
|
1814 |
+
"learning_rate": 2e-05,
|
1815 |
+
"loss": 0.7548,
|
1816 |
+
"step": 121
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 3.78125,
|
1820 |
+
"eval_loss": 0.7144981622695923,
|
1821 |
+
"eval_runtime": 58.3815,
|
1822 |
+
"eval_samples_per_second": 3.426,
|
1823 |
+
"eval_steps_per_second": 0.428,
|
1824 |
+
"step": 121
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 3.8125,
|
1828 |
+
"grad_norm": 0.46941128815266536,
|
1829 |
+
"learning_rate": 2e-05,
|
1830 |
+
"loss": 0.8189,
|
1831 |
+
"step": 122
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 3.8125,
|
1835 |
+
"eval_loss": 0.712846040725708,
|
1836 |
+
"eval_runtime": 58.5034,
|
1837 |
+
"eval_samples_per_second": 3.419,
|
1838 |
+
"eval_steps_per_second": 0.427,
|
1839 |
+
"step": 122
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 3.84375,
|
1843 |
+
"grad_norm": 0.4415453126320104,
|
1844 |
+
"learning_rate": 2e-05,
|
1845 |
+
"loss": 0.7484,
|
1846 |
+
"step": 123
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 3.84375,
|
1850 |
+
"eval_loss": 0.7111316919326782,
|
1851 |
+
"eval_runtime": 58.566,
|
1852 |
+
"eval_samples_per_second": 3.415,
|
1853 |
+
"eval_steps_per_second": 0.427,
|
1854 |
+
"step": 123
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 3.875,
|
1858 |
+
"grad_norm": 0.4237981688992312,
|
1859 |
+
"learning_rate": 2e-05,
|
1860 |
+
"loss": 0.77,
|
1861 |
+
"step": 124
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 3.875,
|
1865 |
+
"eval_loss": 0.7098332047462463,
|
1866 |
+
"eval_runtime": 58.5232,
|
1867 |
+
"eval_samples_per_second": 3.417,
|
1868 |
+
"eval_steps_per_second": 0.427,
|
1869 |
+
"step": 124
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 3.90625,
|
1873 |
+
"grad_norm": 0.49069037639672286,
|
1874 |
+
"learning_rate": 2e-05,
|
1875 |
+
"loss": 0.8059,
|
1876 |
+
"step": 125
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 3.90625,
|
1880 |
+
"eval_loss": 0.7086107730865479,
|
1881 |
+
"eval_runtime": 59.8651,
|
1882 |
+
"eval_samples_per_second": 3.341,
|
1883 |
+
"eval_steps_per_second": 0.418,
|
1884 |
+
"step": 125
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 3.9375,
|
1888 |
+
"grad_norm": 0.48569295378281013,
|
1889 |
+
"learning_rate": 2e-05,
|
1890 |
+
"loss": 0.7799,
|
1891 |
+
"step": 126
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 3.9375,
|
1895 |
+
"eval_loss": 0.7077484726905823,
|
1896 |
+
"eval_runtime": 58.4449,
|
1897 |
+
"eval_samples_per_second": 3.422,
|
1898 |
+
"eval_steps_per_second": 0.428,
|
1899 |
+
"step": 126
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.96875,
|
1903 |
+
"grad_norm": 0.47224685972430797,
|
1904 |
+
"learning_rate": 2e-05,
|
1905 |
+
"loss": 0.7381,
|
1906 |
+
"step": 127
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.96875,
|
1910 |
+
"eval_loss": 0.7073386907577515,
|
1911 |
+
"eval_runtime": 58.5961,
|
1912 |
+
"eval_samples_per_second": 3.413,
|
1913 |
+
"eval_steps_per_second": 0.427,
|
1914 |
+
"step": 127
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 4.0,
|
1918 |
+
"grad_norm": 0.48833051814427636,
|
1919 |
+
"learning_rate": 2e-05,
|
1920 |
+
"loss": 0.678,
|
1921 |
+
"step": 128
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 4.0,
|
1925 |
+
"eval_loss": 0.706765353679657,
|
1926 |
+
"eval_runtime": 60.6877,
|
1927 |
+
"eval_samples_per_second": 3.296,
|
1928 |
+
"eval_steps_per_second": 0.412,
|
1929 |
+
"step": 128
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 4.03125,
|
1933 |
+
"grad_norm": 0.4116173650136014,
|
1934 |
+
"learning_rate": 2e-05,
|
1935 |
+
"loss": 0.7582,
|
1936 |
+
"step": 129
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 4.03125,
|
1940 |
+
"eval_loss": 0.7067686319351196,
|
1941 |
+
"eval_runtime": 58.4349,
|
1942 |
+
"eval_samples_per_second": 3.423,
|
1943 |
+
"eval_steps_per_second": 0.428,
|
1944 |
+
"step": 129
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 4.0625,
|
1948 |
+
"grad_norm": 0.46176556383782513,
|
1949 |
+
"learning_rate": 2e-05,
|
1950 |
+
"loss": 0.7749,
|
1951 |
+
"step": 130
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 4.0625,
|
1955 |
+
"eval_loss": 0.7066690325737,
|
1956 |
+
"eval_runtime": 58.7029,
|
1957 |
+
"eval_samples_per_second": 3.407,
|
1958 |
+
"eval_steps_per_second": 0.426,
|
1959 |
+
"step": 130
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 4.09375,
|
1963 |
+
"grad_norm": 0.4454696779432102,
|
1964 |
+
"learning_rate": 2e-05,
|
1965 |
+
"loss": 0.773,
|
1966 |
+
"step": 131
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 4.09375,
|
1970 |
+
"eval_loss": 0.7064326405525208,
|
1971 |
+
"eval_runtime": 61.252,
|
1972 |
+
"eval_samples_per_second": 3.265,
|
1973 |
+
"eval_steps_per_second": 0.408,
|
1974 |
+
"step": 131
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 4.125,
|
1978 |
+
"grad_norm": 0.5015422163334902,
|
1979 |
+
"learning_rate": 2e-05,
|
1980 |
+
"loss": 0.7369,
|
1981 |
+
"step": 132
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 4.125,
|
1985 |
+
"eval_loss": 0.7057382464408875,
|
1986 |
+
"eval_runtime": 59.411,
|
1987 |
+
"eval_samples_per_second": 3.366,
|
1988 |
+
"eval_steps_per_second": 0.421,
|
1989 |
+
"step": 132
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 4.15625,
|
1993 |
+
"grad_norm": 0.472373878055723,
|
1994 |
+
"learning_rate": 2e-05,
|
1995 |
+
"loss": 0.8262,
|
1996 |
+
"step": 133
|
1997 |
+
},
|
1998 |
+
{
|
1999 |
+
"epoch": 4.15625,
|
2000 |
+
"eval_loss": 0.7050846815109253,
|
2001 |
+
"eval_runtime": 59.2996,
|
2002 |
+
"eval_samples_per_second": 3.373,
|
2003 |
+
"eval_steps_per_second": 0.422,
|
2004 |
+
"step": 133
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 4.1875,
|
2008 |
+
"grad_norm": 0.5384950553698907,
|
2009 |
+
"learning_rate": 2e-05,
|
2010 |
+
"loss": 0.74,
|
2011 |
+
"step": 134
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 4.1875,
|
2015 |
+
"eval_loss": 0.7045766711235046,
|
2016 |
+
"eval_runtime": 59.2928,
|
2017 |
+
"eval_samples_per_second": 3.373,
|
2018 |
+
"eval_steps_per_second": 0.422,
|
2019 |
+
"step": 134
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 4.21875,
|
2023 |
+
"grad_norm": 0.4692662892631433,
|
2024 |
+
"learning_rate": 2e-05,
|
2025 |
+
"loss": 0.7443,
|
2026 |
+
"step": 135
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 4.21875,
|
2030 |
+
"eval_loss": 0.7045109272003174,
|
2031 |
+
"eval_runtime": 59.525,
|
2032 |
+
"eval_samples_per_second": 3.36,
|
2033 |
+
"eval_steps_per_second": 0.42,
|
2034 |
+
"step": 135
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 4.25,
|
2038 |
+
"grad_norm": 0.49707639799158876,
|
2039 |
+
"learning_rate": 2e-05,
|
2040 |
+
"loss": 0.733,
|
2041 |
+
"step": 136
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 4.25,
|
2045 |
+
"eval_loss": 0.7047656178474426,
|
2046 |
+
"eval_runtime": 60.1718,
|
2047 |
+
"eval_samples_per_second": 3.324,
|
2048 |
+
"eval_steps_per_second": 0.415,
|
2049 |
+
"step": 136
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 4.28125,
|
2053 |
+
"grad_norm": 0.5042999858449994,
|
2054 |
+
"learning_rate": 2e-05,
|
2055 |
+
"loss": 0.7303,
|
2056 |
+
"step": 137
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 4.28125,
|
2060 |
+
"eval_loss": 0.7046284675598145,
|
2061 |
+
"eval_runtime": 60.01,
|
2062 |
+
"eval_samples_per_second": 3.333,
|
2063 |
+
"eval_steps_per_second": 0.417,
|
2064 |
+
"step": 137
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 4.3125,
|
2068 |
+
"grad_norm": 0.5236583357740581,
|
2069 |
+
"learning_rate": 2e-05,
|
2070 |
+
"loss": 0.7254,
|
2071 |
+
"step": 138
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 4.3125,
|
2075 |
+
"eval_loss": 0.7038366794586182,
|
2076 |
+
"eval_runtime": 60.3496,
|
2077 |
+
"eval_samples_per_second": 3.314,
|
2078 |
+
"eval_steps_per_second": 0.414,
|
2079 |
+
"step": 138
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 4.34375,
|
2083 |
+
"grad_norm": 0.5197559530441114,
|
2084 |
+
"learning_rate": 2e-05,
|
2085 |
+
"loss": 0.6956,
|
2086 |
+
"step": 139
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 4.34375,
|
2090 |
+
"eval_loss": 0.7023048400878906,
|
2091 |
+
"eval_runtime": 60.3808,
|
2092 |
+
"eval_samples_per_second": 3.312,
|
2093 |
+
"eval_steps_per_second": 0.414,
|
2094 |
+
"step": 139
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 4.375,
|
2098 |
+
"grad_norm": 0.5214546280852583,
|
2099 |
+
"learning_rate": 2e-05,
|
2100 |
+
"loss": 0.7243,
|
2101 |
+
"step": 140
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 4.375,
|
2105 |
+
"eval_loss": 0.7011681199073792,
|
2106 |
+
"eval_runtime": 60.1368,
|
2107 |
+
"eval_samples_per_second": 3.326,
|
2108 |
+
"eval_steps_per_second": 0.416,
|
2109 |
+
"step": 140
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 4.40625,
|
2113 |
+
"grad_norm": 0.47638616269940814,
|
2114 |
+
"learning_rate": 2e-05,
|
2115 |
+
"loss": 0.7442,
|
2116 |
+
"step": 141
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 4.40625,
|
2120 |
+
"eval_loss": 0.7005561590194702,
|
2121 |
+
"eval_runtime": 61.003,
|
2122 |
+
"eval_samples_per_second": 3.279,
|
2123 |
+
"eval_steps_per_second": 0.41,
|
2124 |
+
"step": 141
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 4.4375,
|
2128 |
+
"grad_norm": 0.5067672241908349,
|
2129 |
+
"learning_rate": 2e-05,
|
2130 |
+
"loss": 0.693,
|
2131 |
+
"step": 142
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 4.4375,
|
2135 |
+
"eval_loss": 0.7004985809326172,
|
2136 |
+
"eval_runtime": 60.1646,
|
2137 |
+
"eval_samples_per_second": 3.324,
|
2138 |
+
"eval_steps_per_second": 0.416,
|
2139 |
+
"step": 142
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 4.46875,
|
2143 |
+
"grad_norm": 0.5323088696033406,
|
2144 |
+
"learning_rate": 2e-05,
|
2145 |
+
"loss": 0.7019,
|
2146 |
+
"step": 143
|
2147 |
+
},
|
2148 |
+
{
|
2149 |
+
"epoch": 4.46875,
|
2150 |
+
"eval_loss": 0.7001196146011353,
|
2151 |
+
"eval_runtime": 59.9527,
|
2152 |
+
"eval_samples_per_second": 3.336,
|
2153 |
+
"eval_steps_per_second": 0.417,
|
2154 |
+
"step": 143
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 4.5,
|
2158 |
+
"grad_norm": 0.4994538125400832,
|
2159 |
+
"learning_rate": 2e-05,
|
2160 |
+
"loss": 0.684,
|
2161 |
+
"step": 144
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 4.5,
|
2165 |
+
"eval_loss": 0.6989223957061768,
|
2166 |
+
"eval_runtime": 59.7753,
|
2167 |
+
"eval_samples_per_second": 3.346,
|
2168 |
+
"eval_steps_per_second": 0.418,
|
2169 |
+
"step": 144
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 4.53125,
|
2173 |
+
"grad_norm": 0.5328972466603664,
|
2174 |
+
"learning_rate": 2e-05,
|
2175 |
+
"loss": 0.7581,
|
2176 |
+
"step": 145
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 4.53125,
|
2180 |
+
"eval_loss": 0.697172999382019,
|
2181 |
+
"eval_runtime": 59.678,
|
2182 |
+
"eval_samples_per_second": 3.351,
|
2183 |
+
"eval_steps_per_second": 0.419,
|
2184 |
+
"step": 145
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 4.5625,
|
2188 |
+
"grad_norm": 0.557725244530984,
|
2189 |
+
"learning_rate": 2e-05,
|
2190 |
+
"loss": 0.6562,
|
2191 |
+
"step": 146
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 4.5625,
|
2195 |
+
"eval_loss": 0.6954514980316162,
|
2196 |
+
"eval_runtime": 59.6753,
|
2197 |
+
"eval_samples_per_second": 3.351,
|
2198 |
+
"eval_steps_per_second": 0.419,
|
2199 |
+
"step": 146
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 4.59375,
|
2203 |
+
"grad_norm": 0.520999668899182,
|
2204 |
+
"learning_rate": 2e-05,
|
2205 |
+
"loss": 0.7108,
|
2206 |
+
"step": 147
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 4.59375,
|
2210 |
+
"eval_loss": 0.6949453949928284,
|
2211 |
+
"eval_runtime": 59.7891,
|
2212 |
+
"eval_samples_per_second": 3.345,
|
2213 |
+
"eval_steps_per_second": 0.418,
|
2214 |
+
"step": 147
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 4.625,
|
2218 |
+
"grad_norm": 0.513677589761833,
|
2219 |
+
"learning_rate": 2e-05,
|
2220 |
+
"loss": 0.6697,
|
2221 |
+
"step": 148
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 4.625,
|
2225 |
+
"eval_loss": 0.6953239440917969,
|
2226 |
+
"eval_runtime": 59.7415,
|
2227 |
+
"eval_samples_per_second": 3.348,
|
2228 |
+
"eval_steps_per_second": 0.418,
|
2229 |
+
"step": 148
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 4.65625,
|
2233 |
+
"grad_norm": 0.5054488117701784,
|
2234 |
+
"learning_rate": 2e-05,
|
2235 |
+
"loss": 0.7793,
|
2236 |
+
"step": 149
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 4.65625,
|
2240 |
+
"eval_loss": 0.6959659457206726,
|
2241 |
+
"eval_runtime": 59.9711,
|
2242 |
+
"eval_samples_per_second": 3.335,
|
2243 |
+
"eval_steps_per_second": 0.417,
|
2244 |
+
"step": 149
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 4.6875,
|
2248 |
+
"grad_norm": 0.5962123257952582,
|
2249 |
+
"learning_rate": 2e-05,
|
2250 |
+
"loss": 0.7068,
|
2251 |
+
"step": 150
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 4.6875,
|
2255 |
+
"eval_loss": 0.6952192783355713,
|
2256 |
+
"eval_runtime": 59.6824,
|
2257 |
+
"eval_samples_per_second": 3.351,
|
2258 |
+
"eval_steps_per_second": 0.419,
|
2259 |
+
"step": 150
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 4.71875,
|
2263 |
+
"grad_norm": 0.6009619303481951,
|
2264 |
+
"learning_rate": 2e-05,
|
2265 |
+
"loss": 0.7261,
|
2266 |
+
"step": 151
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 4.71875,
|
2270 |
+
"eval_loss": 0.6935360431671143,
|
2271 |
+
"eval_runtime": 59.5352,
|
2272 |
+
"eval_samples_per_second": 3.359,
|
2273 |
+
"eval_steps_per_second": 0.42,
|
2274 |
+
"step": 151
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 4.75,
|
2278 |
+
"grad_norm": 0.5670117266130251,
|
2279 |
+
"learning_rate": 2e-05,
|
2280 |
+
"loss": 0.744,
|
2281 |
+
"step": 152
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 4.75,
|
2285 |
+
"eval_loss": 0.6924968957901001,
|
2286 |
+
"eval_runtime": 61.2965,
|
2287 |
+
"eval_samples_per_second": 3.263,
|
2288 |
+
"eval_steps_per_second": 0.408,
|
2289 |
+
"step": 152
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 4.78125,
|
2293 |
+
"grad_norm": 0.5564998515626721,
|
2294 |
+
"learning_rate": 2e-05,
|
2295 |
+
"loss": 0.6982,
|
2296 |
+
"step": 153
|
2297 |
+
},
|
2298 |
+
{
|
2299 |
+
"epoch": 4.78125,
|
2300 |
+
"eval_loss": 0.6924961805343628,
|
2301 |
+
"eval_runtime": 61.2731,
|
2302 |
+
"eval_samples_per_second": 3.264,
|
2303 |
+
"eval_steps_per_second": 0.408,
|
2304 |
+
"step": 153
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 4.8125,
|
2308 |
+
"grad_norm": 0.528752035989291,
|
2309 |
+
"learning_rate": 2e-05,
|
2310 |
+
"loss": 0.7109,
|
2311 |
+
"step": 154
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 4.8125,
|
2315 |
+
"eval_loss": 0.6933311223983765,
|
2316 |
+
"eval_runtime": 59.8859,
|
2317 |
+
"eval_samples_per_second": 3.34,
|
2318 |
+
"eval_steps_per_second": 0.417,
|
2319 |
+
"step": 154
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 4.84375,
|
2323 |
+
"grad_norm": 0.5868388300709311,
|
2324 |
+
"learning_rate": 2e-05,
|
2325 |
+
"loss": 0.6592,
|
2326 |
+
"step": 155
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 4.84375,
|
2330 |
+
"eval_loss": 0.6933980584144592,
|
2331 |
+
"eval_runtime": 59.9915,
|
2332 |
+
"eval_samples_per_second": 3.334,
|
2333 |
+
"eval_steps_per_second": 0.417,
|
2334 |
+
"step": 155
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 4.875,
|
2338 |
+
"grad_norm": 0.5602090329210427,
|
2339 |
+
"learning_rate": 2e-05,
|
2340 |
+
"loss": 0.7682,
|
2341 |
+
"step": 156
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 4.875,
|
2345 |
+
"eval_loss": 0.6923888921737671,
|
2346 |
+
"eval_runtime": 61.499,
|
2347 |
+
"eval_samples_per_second": 3.252,
|
2348 |
+
"eval_steps_per_second": 0.407,
|
2349 |
+
"step": 156
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 4.90625,
|
2353 |
+
"grad_norm": 0.5051330890531748,
|
2354 |
+
"learning_rate": 2e-05,
|
2355 |
+
"loss": 0.7491,
|
2356 |
+
"step": 157
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 4.90625,
|
2360 |
+
"eval_loss": 0.69191575050354,
|
2361 |
+
"eval_runtime": 59.6969,
|
2362 |
+
"eval_samples_per_second": 3.35,
|
2363 |
+
"eval_steps_per_second": 0.419,
|
2364 |
+
"step": 157
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 4.9375,
|
2368 |
+
"grad_norm": 0.5377224007409029,
|
2369 |
+
"learning_rate": 2e-05,
|
2370 |
+
"loss": 0.7501,
|
2371 |
+
"step": 158
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 4.9375,
|
2375 |
+
"eval_loss": 0.69122314453125,
|
2376 |
+
"eval_runtime": 60.1345,
|
2377 |
+
"eval_samples_per_second": 3.326,
|
2378 |
+
"eval_steps_per_second": 0.416,
|
2379 |
+
"step": 158
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 4.96875,
|
2383 |
+
"grad_norm": 0.544576473903093,
|
2384 |
+
"learning_rate": 2e-05,
|
2385 |
+
"loss": 0.714,
|
2386 |
+
"step": 159
|
2387 |
+
},
|
2388 |
+
{
|
2389 |
+
"epoch": 4.96875,
|
2390 |
+
"eval_loss": 0.6905286908149719,
|
2391 |
+
"eval_runtime": 59.9667,
|
2392 |
+
"eval_samples_per_second": 3.335,
|
2393 |
+
"eval_steps_per_second": 0.417,
|
2394 |
+
"step": 159
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 5.0,
|
2398 |
+
"grad_norm": 0.5027197538560159,
|
2399 |
+
"learning_rate": 2e-05,
|
2400 |
+
"loss": 0.7181,
|
2401 |
+
"step": 160
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 5.0,
|
2405 |
+
"eval_loss": 0.6906802654266357,
|
2406 |
+
"eval_runtime": 60.0766,
|
2407 |
+
"eval_samples_per_second": 3.329,
|
2408 |
+
"eval_steps_per_second": 0.416,
|
2409 |
+
"step": 160
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 5.03125,
|
2413 |
+
"grad_norm": 0.5041535532115543,
|
2414 |
+
"learning_rate": 2e-05,
|
2415 |
+
"loss": 0.6636,
|
2416 |
+
"step": 161
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 5.03125,
|
2420 |
+
"eval_loss": 0.6912646293640137,
|
2421 |
+
"eval_runtime": 63.5855,
|
2422 |
+
"eval_samples_per_second": 3.145,
|
2423 |
+
"eval_steps_per_second": 0.393,
|
2424 |
+
"step": 161
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 5.0625,
|
2428 |
+
"grad_norm": 0.5286650599348627,
|
2429 |
+
"learning_rate": 2e-05,
|
2430 |
+
"loss": 0.8107,
|
2431 |
+
"step": 162
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 5.0625,
|
2435 |
+
"eval_loss": 0.6922540068626404,
|
2436 |
+
"eval_runtime": 56.5364,
|
2437 |
+
"eval_samples_per_second": 3.538,
|
2438 |
+
"eval_steps_per_second": 0.442,
|
2439 |
+
"step": 162
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 5.09375,
|
2443 |
+
"grad_norm": 0.588785168960039,
|
2444 |
+
"learning_rate": 2e-05,
|
2445 |
+
"loss": 0.6169,
|
2446 |
+
"step": 163
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 5.09375,
|
2450 |
+
"eval_loss": 0.692643404006958,
|
2451 |
+
"eval_runtime": 56.5005,
|
2452 |
+
"eval_samples_per_second": 3.54,
|
2453 |
+
"eval_steps_per_second": 0.442,
|
2454 |
+
"step": 163
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 5.125,
|
2458 |
+
"grad_norm": 0.5752677936578872,
|
2459 |
+
"learning_rate": 2e-05,
|
2460 |
+
"loss": 0.7473,
|
2461 |
+
"step": 164
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 5.125,
|
2465 |
+
"eval_loss": 0.6927568912506104,
|
2466 |
+
"eval_runtime": 58.5386,
|
2467 |
+
"eval_samples_per_second": 3.417,
|
2468 |
+
"eval_steps_per_second": 0.427,
|
2469 |
+
"step": 164
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 5.15625,
|
2473 |
+
"grad_norm": 0.6487162117437294,
|
2474 |
+
"learning_rate": 2e-05,
|
2475 |
+
"loss": 0.588,
|
2476 |
+
"step": 165
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 5.15625,
|
2480 |
+
"eval_loss": 0.692574143409729,
|
2481 |
+
"eval_runtime": 56.4611,
|
2482 |
+
"eval_samples_per_second": 3.542,
|
2483 |
+
"eval_steps_per_second": 0.443,
|
2484 |
+
"step": 165
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 5.1875,
|
2488 |
+
"grad_norm": 0.6353608377871973,
|
2489 |
+
"learning_rate": 2e-05,
|
2490 |
+
"loss": 0.6933,
|
2491 |
+
"step": 166
|
2492 |
+
},
|
2493 |
+
{
|
2494 |
+
"epoch": 5.1875,
|
2495 |
+
"eval_loss": 0.6932590007781982,
|
2496 |
+
"eval_runtime": 56.5989,
|
2497 |
+
"eval_samples_per_second": 3.534,
|
2498 |
+
"eval_steps_per_second": 0.442,
|
2499 |
+
"step": 166
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 5.21875,
|
2503 |
+
"grad_norm": 0.5450036592535661,
|
2504 |
+
"learning_rate": 2e-05,
|
2505 |
+
"loss": 0.7175,
|
2506 |
+
"step": 167
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 5.21875,
|
2510 |
+
"eval_loss": 0.6944625973701477,
|
2511 |
+
"eval_runtime": 56.5362,
|
2512 |
+
"eval_samples_per_second": 3.538,
|
2513 |
+
"eval_steps_per_second": 0.442,
|
2514 |
+
"step": 167
|
2515 |
+
},
|
2516 |
+
{
|
2517 |
+
"epoch": 5.25,
|
2518 |
+
"grad_norm": 0.6095734786538398,
|
2519 |
+
"learning_rate": 2e-05,
|
2520 |
+
"loss": 0.7478,
|
2521 |
+
"step": 168
|
2522 |
+
},
|
2523 |
+
{
|
2524 |
+
"epoch": 5.25,
|
2525 |
+
"eval_loss": 0.695120632648468,
|
2526 |
+
"eval_runtime": 56.465,
|
2527 |
+
"eval_samples_per_second": 3.542,
|
2528 |
+
"eval_steps_per_second": 0.443,
|
2529 |
+
"step": 168
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 5.28125,
|
2533 |
+
"grad_norm": 0.5879704367364821,
|
2534 |
+
"learning_rate": 2e-05,
|
2535 |
+
"loss": 0.674,
|
2536 |
+
"step": 169
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 5.28125,
|
2540 |
+
"eval_loss": 0.6956540942192078,
|
2541 |
+
"eval_runtime": 56.6007,
|
2542 |
+
"eval_samples_per_second": 3.534,
|
2543 |
+
"eval_steps_per_second": 0.442,
|
2544 |
+
"step": 169
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 5.3125,
|
2548 |
+
"grad_norm": 0.6595426789183463,
|
2549 |
+
"learning_rate": 2e-05,
|
2550 |
+
"loss": 0.6536,
|
2551 |
+
"step": 170
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 5.3125,
|
2555 |
+
"eval_loss": 0.6957553029060364,
|
2556 |
+
"eval_runtime": 56.4722,
|
2557 |
+
"eval_samples_per_second": 3.542,
|
2558 |
+
"eval_steps_per_second": 0.443,
|
2559 |
+
"step": 170
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 5.34375,
|
2563 |
+
"grad_norm": 0.7708120772721636,
|
2564 |
+
"learning_rate": 2e-05,
|
2565 |
+
"loss": 0.666,
|
2566 |
+
"step": 171
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 5.34375,
|
2570 |
+
"eval_loss": 0.693030834197998,
|
2571 |
+
"eval_runtime": 56.3518,
|
2572 |
+
"eval_samples_per_second": 3.549,
|
2573 |
+
"eval_steps_per_second": 0.444,
|
2574 |
+
"step": 171
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 5.375,
|
2578 |
+
"grad_norm": 0.666091377671071,
|
2579 |
+
"learning_rate": 2e-05,
|
2580 |
+
"loss": 0.7422,
|
2581 |
+
"step": 172
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 5.375,
|
2585 |
+
"eval_loss": 0.6900334358215332,
|
2586 |
+
"eval_runtime": 56.5395,
|
2587 |
+
"eval_samples_per_second": 3.537,
|
2588 |
+
"eval_steps_per_second": 0.442,
|
2589 |
+
"step": 172
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 5.40625,
|
2593 |
+
"grad_norm": 0.6203365868953359,
|
2594 |
+
"learning_rate": 2e-05,
|
2595 |
+
"loss": 0.7069,
|
2596 |
+
"step": 173
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"epoch": 5.40625,
|
2600 |
+
"eval_loss": 0.6880744099617004,
|
2601 |
+
"eval_runtime": 56.4675,
|
2602 |
+
"eval_samples_per_second": 3.542,
|
2603 |
+
"eval_steps_per_second": 0.443,
|
2604 |
+
"step": 173
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"epoch": 5.4375,
|
2608 |
+
"grad_norm": 0.6299525495855296,
|
2609 |
+
"learning_rate": 2e-05,
|
2610 |
+
"loss": 0.7422,
|
2611 |
+
"step": 174
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 5.4375,
|
2615 |
+
"eval_loss": 0.686725378036499,
|
2616 |
+
"eval_runtime": 56.671,
|
2617 |
+
"eval_samples_per_second": 3.529,
|
2618 |
+
"eval_steps_per_second": 0.441,
|
2619 |
+
"step": 174
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 5.46875,
|
2623 |
+
"grad_norm": 0.6415660970283229,
|
2624 |
+
"learning_rate": 2e-05,
|
2625 |
+
"loss": 0.7347,
|
2626 |
+
"step": 175
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 5.46875,
|
2630 |
+
"eval_loss": 0.6870352029800415,
|
2631 |
+
"eval_runtime": 56.5976,
|
2632 |
+
"eval_samples_per_second": 3.534,
|
2633 |
+
"eval_steps_per_second": 0.442,
|
2634 |
+
"step": 175
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 5.5,
|
2638 |
+
"grad_norm": 0.6569935128967318,
|
2639 |
+
"learning_rate": 2e-05,
|
2640 |
+
"loss": 0.6773,
|
2641 |
+
"step": 176
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 5.5,
|
2645 |
+
"eval_loss": 0.6870338320732117,
|
2646 |
+
"eval_runtime": 57.2325,
|
2647 |
+
"eval_samples_per_second": 3.495,
|
2648 |
+
"eval_steps_per_second": 0.437,
|
2649 |
+
"step": 176
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 5.53125,
|
2653 |
+
"grad_norm": 0.6895239904364278,
|
2654 |
+
"learning_rate": 2e-05,
|
2655 |
+
"loss": 0.7106,
|
2656 |
+
"step": 177
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 5.53125,
|
2660 |
+
"eval_loss": 0.6859387755393982,
|
2661 |
+
"eval_runtime": 57.3075,
|
2662 |
+
"eval_samples_per_second": 3.49,
|
2663 |
+
"eval_steps_per_second": 0.436,
|
2664 |
+
"step": 177
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 5.5625,
|
2668 |
+
"grad_norm": 0.5855839234707383,
|
2669 |
+
"learning_rate": 2e-05,
|
2670 |
+
"loss": 0.7361,
|
2671 |
+
"step": 178
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 5.5625,
|
2675 |
+
"eval_loss": 0.6856819987297058,
|
2676 |
+
"eval_runtime": 57.5973,
|
2677 |
+
"eval_samples_per_second": 3.472,
|
2678 |
+
"eval_steps_per_second": 0.434,
|
2679 |
+
"step": 178
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 5.59375,
|
2683 |
+
"grad_norm": 0.6198072484940144,
|
2684 |
+
"learning_rate": 2e-05,
|
2685 |
+
"loss": 0.6386,
|
2686 |
+
"step": 179
|
2687 |
+
},
|
2688 |
+
{
|
2689 |
+
"epoch": 5.59375,
|
2690 |
+
"eval_loss": 0.6865841746330261,
|
2691 |
+
"eval_runtime": 57.4429,
|
2692 |
+
"eval_samples_per_second": 3.482,
|
2693 |
+
"eval_steps_per_second": 0.435,
|
2694 |
+
"step": 179
|
2695 |
+
},
|
2696 |
+
{
|
2697 |
+
"epoch": 5.625,
|
2698 |
+
"grad_norm": 0.6169444945747248,
|
2699 |
+
"learning_rate": 2e-05,
|
2700 |
+
"loss": 0.6455,
|
2701 |
+
"step": 180
|
2702 |
+
},
|
2703 |
+
{
|
2704 |
+
"epoch": 5.625,
|
2705 |
+
"eval_loss": 0.6871997714042664,
|
2706 |
+
"eval_runtime": 57.3975,
|
2707 |
+
"eval_samples_per_second": 3.484,
|
2708 |
+
"eval_steps_per_second": 0.436,
|
2709 |
+
"step": 180
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 5.65625,
|
2713 |
+
"grad_norm": 0.6524804251939137,
|
2714 |
+
"learning_rate": 2e-05,
|
2715 |
+
"loss": 0.6588,
|
2716 |
+
"step": 181
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 5.65625,
|
2720 |
+
"eval_loss": 0.6873356103897095,
|
2721 |
+
"eval_runtime": 57.4579,
|
2722 |
+
"eval_samples_per_second": 3.481,
|
2723 |
+
"eval_steps_per_second": 0.435,
|
2724 |
+
"step": 181
|
2725 |
+
},
|
2726 |
+
{
|
2727 |
+
"epoch": 5.6875,
|
2728 |
+
"grad_norm": 0.6578787618504525,
|
2729 |
+
"learning_rate": 2e-05,
|
2730 |
+
"loss": 0.6274,
|
2731 |
+
"step": 182
|
2732 |
+
},
|
2733 |
+
{
|
2734 |
+
"epoch": 5.6875,
|
2735 |
+
"eval_loss": 0.6880214214324951,
|
2736 |
+
"eval_runtime": 57.5735,
|
2737 |
+
"eval_samples_per_second": 3.474,
|
2738 |
+
"eval_steps_per_second": 0.434,
|
2739 |
+
"step": 182
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 5.71875,
|
2743 |
+
"grad_norm": 0.732160801451622,
|
2744 |
+
"learning_rate": 2e-05,
|
2745 |
+
"loss": 0.6623,
|
2746 |
+
"step": 183
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 5.71875,
|
2750 |
+
"eval_loss": 0.6879817247390747,
|
2751 |
+
"eval_runtime": 57.5801,
|
2752 |
+
"eval_samples_per_second": 3.473,
|
2753 |
+
"eval_steps_per_second": 0.434,
|
2754 |
+
"step": 183
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 5.75,
|
2758 |
+
"grad_norm": 0.7294753965107613,
|
2759 |
+
"learning_rate": 2e-05,
|
2760 |
+
"loss": 0.6562,
|
2761 |
+
"step": 184
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 5.75,
|
2765 |
+
"eval_loss": 0.6870495676994324,
|
2766 |
+
"eval_runtime": 57.6659,
|
2767 |
+
"eval_samples_per_second": 3.468,
|
2768 |
+
"eval_steps_per_second": 0.434,
|
2769 |
+
"step": 184
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 5.78125,
|
2773 |
+
"grad_norm": 0.6947870304881401,
|
2774 |
+
"learning_rate": 2e-05,
|
2775 |
+
"loss": 0.695,
|
2776 |
+
"step": 185
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 5.78125,
|
2780 |
+
"eval_loss": 0.6856162548065186,
|
2781 |
+
"eval_runtime": 57.4452,
|
2782 |
+
"eval_samples_per_second": 3.482,
|
2783 |
+
"eval_steps_per_second": 0.435,
|
2784 |
+
"step": 185
|
2785 |
+
},
|
2786 |
+
{
|
2787 |
+
"epoch": 5.8125,
|
2788 |
+
"grad_norm": 0.7085011414361884,
|
2789 |
+
"learning_rate": 2e-05,
|
2790 |
+
"loss": 0.6634,
|
2791 |
+
"step": 186
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"epoch": 5.8125,
|
2795 |
+
"eval_loss": 0.6839439272880554,
|
2796 |
+
"eval_runtime": 57.3621,
|
2797 |
+
"eval_samples_per_second": 3.487,
|
2798 |
+
"eval_steps_per_second": 0.436,
|
2799 |
+
"step": 186
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 5.84375,
|
2803 |
+
"grad_norm": 0.6548606152047736,
|
2804 |
+
"learning_rate": 2e-05,
|
2805 |
+
"loss": 0.7117,
|
2806 |
+
"step": 187
|
2807 |
+
},
|
2808 |
+
{
|
2809 |
+
"epoch": 5.84375,
|
2810 |
+
"eval_loss": 0.6837204098701477,
|
2811 |
+
"eval_runtime": 57.3849,
|
2812 |
+
"eval_samples_per_second": 3.485,
|
2813 |
+
"eval_steps_per_second": 0.436,
|
2814 |
+
"step": 187
|
2815 |
+
},
|
2816 |
+
{
|
2817 |
+
"epoch": 5.875,
|
2818 |
+
"grad_norm": 0.6662179186613736,
|
2819 |
+
"learning_rate": 2e-05,
|
2820 |
+
"loss": 0.6528,
|
2821 |
+
"step": 188
|
2822 |
+
},
|
2823 |
+
{
|
2824 |
+
"epoch": 5.875,
|
2825 |
+
"eval_loss": 0.6844826340675354,
|
2826 |
+
"eval_runtime": 57.3173,
|
2827 |
+
"eval_samples_per_second": 3.489,
|
2828 |
+
"eval_steps_per_second": 0.436,
|
2829 |
+
"step": 188
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 5.90625,
|
2833 |
+
"grad_norm": 0.6638311768585444,
|
2834 |
+
"learning_rate": 2e-05,
|
2835 |
+
"loss": 0.6582,
|
2836 |
+
"step": 189
|
2837 |
+
},
|
2838 |
+
{
|
2839 |
+
"epoch": 5.90625,
|
2840 |
+
"eval_loss": 0.6846724152565002,
|
2841 |
+
"eval_runtime": 57.5354,
|
2842 |
+
"eval_samples_per_second": 3.476,
|
2843 |
+
"eval_steps_per_second": 0.435,
|
2844 |
+
"step": 189
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 5.9375,
|
2848 |
+
"grad_norm": 0.7007259768118588,
|
2849 |
+
"learning_rate": 2e-05,
|
2850 |
+
"loss": 0.6742,
|
2851 |
+
"step": 190
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 5.9375,
|
2855 |
+
"eval_loss": 0.6834731101989746,
|
2856 |
+
"eval_runtime": 57.4134,
|
2857 |
+
"eval_samples_per_second": 3.484,
|
2858 |
+
"eval_steps_per_second": 0.435,
|
2859 |
+
"step": 190
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 5.96875,
|
2863 |
+
"grad_norm": 0.6563132346432226,
|
2864 |
+
"learning_rate": 2e-05,
|
2865 |
+
"loss": 0.6752,
|
2866 |
+
"step": 191
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 5.96875,
|
2870 |
+
"eval_loss": 0.6817070245742798,
|
2871 |
+
"eval_runtime": 56.6649,
|
2872 |
+
"eval_samples_per_second": 3.53,
|
2873 |
+
"eval_steps_per_second": 0.441,
|
2874 |
+
"step": 191
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 6.0,
|
2878 |
+
"grad_norm": 0.6349703649303867,
|
2879 |
+
"learning_rate": 2e-05,
|
2880 |
+
"loss": 0.6795,
|
2881 |
+
"step": 192
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 6.0,
|
2885 |
+
"eval_loss": 0.6804311871528625,
|
2886 |
+
"eval_runtime": 56.4378,
|
2887 |
+
"eval_samples_per_second": 3.544,
|
2888 |
+
"eval_steps_per_second": 0.443,
|
2889 |
+
"step": 192
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 6.03125,
|
2893 |
+
"grad_norm": 0.6716039243820887,
|
2894 |
+
"learning_rate": 2e-05,
|
2895 |
+
"loss": 0.7145,
|
2896 |
+
"step": 193
|
2897 |
+
},
|
2898 |
+
{
|
2899 |
+
"epoch": 6.03125,
|
2900 |
+
"eval_loss": 0.6804825067520142,
|
2901 |
+
"eval_runtime": 56.6403,
|
2902 |
+
"eval_samples_per_second": 3.531,
|
2903 |
+
"eval_steps_per_second": 0.441,
|
2904 |
+
"step": 193
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 6.0625,
|
2908 |
+
"grad_norm": 0.5950395984856348,
|
2909 |
+
"learning_rate": 2e-05,
|
2910 |
+
"loss": 0.6768,
|
2911 |
+
"step": 194
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 6.0625,
|
2915 |
+
"eval_loss": 0.6823931932449341,
|
2916 |
+
"eval_runtime": 56.5459,
|
2917 |
+
"eval_samples_per_second": 3.537,
|
2918 |
+
"eval_steps_per_second": 0.442,
|
2919 |
+
"step": 194
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 6.09375,
|
2923 |
+
"grad_norm": 0.6787703014730869,
|
2924 |
+
"learning_rate": 2e-05,
|
2925 |
+
"loss": 0.6158,
|
2926 |
+
"step": 195
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 6.09375,
|
2930 |
+
"eval_loss": 0.6854414939880371,
|
2931 |
+
"eval_runtime": 56.5293,
|
2932 |
+
"eval_samples_per_second": 3.538,
|
2933 |
+
"eval_steps_per_second": 0.442,
|
2934 |
+
"step": 195
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"epoch": 6.125,
|
2938 |
+
"grad_norm": 0.6526684210082853,
|
2939 |
+
"learning_rate": 2e-05,
|
2940 |
+
"loss": 0.6479,
|
2941 |
+
"step": 196
|
2942 |
+
},
|
2943 |
+
{
|
2944 |
+
"epoch": 6.125,
|
2945 |
+
"eval_loss": 0.6892845034599304,
|
2946 |
+
"eval_runtime": 56.5099,
|
2947 |
+
"eval_samples_per_second": 3.539,
|
2948 |
+
"eval_steps_per_second": 0.442,
|
2949 |
+
"step": 196
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 6.15625,
|
2953 |
+
"grad_norm": 0.6997704487164051,
|
2954 |
+
"learning_rate": 2e-05,
|
2955 |
+
"loss": 0.6706,
|
2956 |
+
"step": 197
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 6.15625,
|
2960 |
+
"eval_loss": 0.6941932439804077,
|
2961 |
+
"eval_runtime": 58.514,
|
2962 |
+
"eval_samples_per_second": 3.418,
|
2963 |
+
"eval_steps_per_second": 0.427,
|
2964 |
+
"step": 197
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 6.1875,
|
2968 |
+
"grad_norm": 0.7511370305129338,
|
2969 |
+
"learning_rate": 2e-05,
|
2970 |
+
"loss": 0.7418,
|
2971 |
+
"step": 198
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 6.1875,
|
2975 |
+
"eval_loss": 0.6964046955108643,
|
2976 |
+
"eval_runtime": 58.4428,
|
2977 |
+
"eval_samples_per_second": 3.422,
|
2978 |
+
"eval_steps_per_second": 0.428,
|
2979 |
+
"step": 198
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 6.21875,
|
2983 |
+
"grad_norm": 0.8468482037911412,
|
2984 |
+
"learning_rate": 2e-05,
|
2985 |
+
"loss": 0.618,
|
2986 |
+
"step": 199
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"epoch": 6.21875,
|
2990 |
+
"eval_loss": 0.6947888731956482,
|
2991 |
+
"eval_runtime": 56.6921,
|
2992 |
+
"eval_samples_per_second": 3.528,
|
2993 |
+
"eval_steps_per_second": 0.441,
|
2994 |
+
"step": 199
|
2995 |
+
},
|
2996 |
+
{
|
2997 |
+
"epoch": 6.25,
|
2998 |
+
"grad_norm": 0.80366391754735,
|
2999 |
+
"learning_rate": 2e-05,
|
3000 |
+
"loss": 0.6712,
|
3001 |
+
"step": 200
|
3002 |
+
},
|
3003 |
+
{
|
3004 |
+
"epoch": 6.25,
|
3005 |
+
"eval_loss": 0.691255509853363,
|
3006 |
+
"eval_runtime": 56.7536,
|
3007 |
+
"eval_samples_per_second": 3.524,
|
3008 |
+
"eval_steps_per_second": 0.441,
|
3009 |
+
"step": 200
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 6.28125,
|
3013 |
+
"grad_norm": 0.7123001788838409,
|
3014 |
+
"learning_rate": 2e-05,
|
3015 |
+
"loss": 0.6886,
|
3016 |
+
"step": 201
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 6.28125,
|
3020 |
+
"eval_loss": 0.6888566613197327,
|
3021 |
+
"eval_runtime": 57.4537,
|
3022 |
+
"eval_samples_per_second": 3.481,
|
3023 |
+
"eval_steps_per_second": 0.435,
|
3024 |
+
"step": 201
|
3025 |
+
},
|
3026 |
+
{
|
3027 |
+
"epoch": 6.3125,
|
3028 |
+
"grad_norm": 0.7785807978964993,
|
3029 |
+
"learning_rate": 2e-05,
|
3030 |
+
"loss": 0.6096,
|
3031 |
+
"step": 202
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 6.3125,
|
3035 |
+
"eval_loss": 0.6869829297065735,
|
3036 |
+
"eval_runtime": 57.3967,
|
3037 |
+
"eval_samples_per_second": 3.485,
|
3038 |
+
"eval_steps_per_second": 0.436,
|
3039 |
+
"step": 202
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 6.34375,
|
3043 |
+
"grad_norm": 0.6771659776183533,
|
3044 |
+
"learning_rate": 2e-05,
|
3045 |
+
"loss": 0.7328,
|
3046 |
+
"step": 203
|
3047 |
+
},
|
3048 |
+
{
|
3049 |
+
"epoch": 6.34375,
|
3050 |
+
"eval_loss": 0.6867367625236511,
|
3051 |
+
"eval_runtime": 57.5277,
|
3052 |
+
"eval_samples_per_second": 3.477,
|
3053 |
+
"eval_steps_per_second": 0.435,
|
3054 |
+
"step": 203
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 6.375,
|
3058 |
+
"grad_norm": 0.8106446356590065,
|
3059 |
+
"learning_rate": 2e-05,
|
3060 |
+
"loss": 0.5931,
|
3061 |
+
"step": 204
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 6.375,
|
3065 |
+
"eval_loss": 0.6862130165100098,
|
3066 |
+
"eval_runtime": 57.4868,
|
3067 |
+
"eval_samples_per_second": 3.479,
|
3068 |
+
"eval_steps_per_second": 0.435,
|
3069 |
+
"step": 204
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 6.40625,
|
3073 |
+
"grad_norm": 0.6600674902481064,
|
3074 |
+
"learning_rate": 2e-05,
|
3075 |
+
"loss": 0.5789,
|
3076 |
+
"step": 205
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 6.40625,
|
3080 |
+
"eval_loss": 0.6866827607154846,
|
3081 |
+
"eval_runtime": 57.4287,
|
3082 |
+
"eval_samples_per_second": 3.483,
|
3083 |
+
"eval_steps_per_second": 0.435,
|
3084 |
+
"step": 205
|
3085 |
+
},
|
3086 |
+
{
|
3087 |
+
"epoch": 6.4375,
|
3088 |
+
"grad_norm": 0.8177118767015663,
|
3089 |
+
"learning_rate": 2e-05,
|
3090 |
+
"loss": 0.6395,
|
3091 |
+
"step": 206
|
3092 |
+
},
|
3093 |
+
{
|
3094 |
+
"epoch": 6.4375,
|
3095 |
+
"eval_loss": 0.6866394281387329,
|
3096 |
+
"eval_runtime": 57.0918,
|
3097 |
+
"eval_samples_per_second": 3.503,
|
3098 |
+
"eval_steps_per_second": 0.438,
|
3099 |
+
"step": 206
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 6.46875,
|
3103 |
+
"grad_norm": 0.7284237801181533,
|
3104 |
+
"learning_rate": 2e-05,
|
3105 |
+
"loss": 0.6835,
|
3106 |
+
"step": 207
|
3107 |
+
},
|
3108 |
+
{
|
3109 |
+
"epoch": 6.46875,
|
3110 |
+
"eval_loss": 0.6864017248153687,
|
3111 |
+
"eval_runtime": 57.1565,
|
3112 |
+
"eval_samples_per_second": 3.499,
|
3113 |
+
"eval_steps_per_second": 0.437,
|
3114 |
+
"step": 207
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 6.5,
|
3118 |
+
"grad_norm": 0.7603002790103086,
|
3119 |
+
"learning_rate": 2e-05,
|
3120 |
+
"loss": 0.6347,
|
3121 |
+
"step": 208
|
3122 |
+
},
|
3123 |
+
{
|
3124 |
+
"epoch": 6.5,
|
3125 |
+
"eval_loss": 0.6871703267097473,
|
3126 |
+
"eval_runtime": 57.4181,
|
3127 |
+
"eval_samples_per_second": 3.483,
|
3128 |
+
"eval_steps_per_second": 0.435,
|
3129 |
+
"step": 208
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 6.53125,
|
3133 |
+
"grad_norm": 0.8359766442946917,
|
3134 |
+
"learning_rate": 2e-05,
|
3135 |
+
"loss": 0.6088,
|
3136 |
+
"step": 209
|
3137 |
+
},
|
3138 |
+
{
|
3139 |
+
"epoch": 6.53125,
|
3140 |
+
"eval_loss": 0.6878347992897034,
|
3141 |
+
"eval_runtime": 57.4837,
|
3142 |
+
"eval_samples_per_second": 3.479,
|
3143 |
+
"eval_steps_per_second": 0.435,
|
3144 |
+
"step": 209
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 6.5625,
|
3148 |
+
"grad_norm": 0.7778968951616311,
|
3149 |
+
"learning_rate": 2e-05,
|
3150 |
+
"loss": 0.5912,
|
3151 |
+
"step": 210
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 6.5625,
|
3155 |
+
"eval_loss": 0.6893374919891357,
|
3156 |
+
"eval_runtime": 57.6159,
|
3157 |
+
"eval_samples_per_second": 3.471,
|
3158 |
+
"eval_steps_per_second": 0.434,
|
3159 |
+
"step": 210
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 6.59375,
|
3163 |
+
"grad_norm": 0.8300437291816744,
|
3164 |
+
"learning_rate": 2e-05,
|
3165 |
+
"loss": 0.6299,
|
3166 |
+
"step": 211
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 6.59375,
|
3170 |
+
"eval_loss": 0.6899804472923279,
|
3171 |
+
"eval_runtime": 57.1491,
|
3172 |
+
"eval_samples_per_second": 3.5,
|
3173 |
+
"eval_steps_per_second": 0.437,
|
3174 |
+
"step": 211
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 6.625,
|
3178 |
+
"grad_norm": 0.7994430152763061,
|
3179 |
+
"learning_rate": 2e-05,
|
3180 |
+
"loss": 0.6073,
|
3181 |
+
"step": 212
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 6.625,
|
3185 |
+
"eval_loss": 0.6889459490776062,
|
3186 |
+
"eval_runtime": 57.3773,
|
3187 |
+
"eval_samples_per_second": 3.486,
|
3188 |
+
"eval_steps_per_second": 0.436,
|
3189 |
+
"step": 212
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 6.65625,
|
3193 |
+
"grad_norm": 0.7475670453371858,
|
3194 |
+
"learning_rate": 2e-05,
|
3195 |
+
"loss": 0.6774,
|
3196 |
+
"step": 213
|
3197 |
+
},
|
3198 |
+
{
|
3199 |
+
"epoch": 6.65625,
|
3200 |
+
"eval_loss": 0.6873544454574585,
|
3201 |
+
"eval_runtime": 57.4114,
|
3202 |
+
"eval_samples_per_second": 3.484,
|
3203 |
+
"eval_steps_per_second": 0.435,
|
3204 |
+
"step": 213
|
3205 |
+
},
|
3206 |
+
{
|
3207 |
+
"epoch": 6.6875,
|
3208 |
+
"grad_norm": 0.7281375343651885,
|
3209 |
+
"learning_rate": 2e-05,
|
3210 |
+
"loss": 0.6404,
|
3211 |
+
"step": 214
|
3212 |
+
},
|
3213 |
+
{
|
3214 |
+
"epoch": 6.6875,
|
3215 |
+
"eval_loss": 0.6867469549179077,
|
3216 |
+
"eval_runtime": 57.2899,
|
3217 |
+
"eval_samples_per_second": 3.491,
|
3218 |
+
"eval_steps_per_second": 0.436,
|
3219 |
+
"step": 214
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 6.71875,
|
3223 |
+
"grad_norm": 0.7684115091080507,
|
3224 |
+
"learning_rate": 2e-05,
|
3225 |
+
"loss": 0.6382,
|
3226 |
+
"step": 215
|
3227 |
+
},
|
3228 |
+
{
|
3229 |
+
"epoch": 6.71875,
|
3230 |
+
"eval_loss": 0.6860084533691406,
|
3231 |
+
"eval_runtime": 57.38,
|
3232 |
+
"eval_samples_per_second": 3.486,
|
3233 |
+
"eval_steps_per_second": 0.436,
|
3234 |
+
"step": 215
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 6.75,
|
3238 |
+
"grad_norm": 0.7962356695445627,
|
3239 |
+
"learning_rate": 2e-05,
|
3240 |
+
"loss": 0.6398,
|
3241 |
+
"step": 216
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 6.75,
|
3245 |
+
"eval_loss": 0.6856002807617188,
|
3246 |
+
"eval_runtime": 57.2399,
|
3247 |
+
"eval_samples_per_second": 3.494,
|
3248 |
+
"eval_steps_per_second": 0.437,
|
3249 |
+
"step": 216
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 6.78125,
|
3253 |
+
"grad_norm": 0.7893826807634562,
|
3254 |
+
"learning_rate": 2e-05,
|
3255 |
+
"loss": 0.59,
|
3256 |
+
"step": 217
|
3257 |
+
},
|
3258 |
+
{
|
3259 |
+
"epoch": 6.78125,
|
3260 |
+
"eval_loss": 0.6870043873786926,
|
3261 |
+
"eval_runtime": 57.1671,
|
3262 |
+
"eval_samples_per_second": 3.499,
|
3263 |
+
"eval_steps_per_second": 0.437,
|
3264 |
+
"step": 217
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 6.8125,
|
3268 |
+
"grad_norm": 0.8329644141570051,
|
3269 |
+
"learning_rate": 2e-05,
|
3270 |
+
"loss": 0.5932,
|
3271 |
+
"step": 218
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 6.8125,
|
3275 |
+
"eval_loss": 0.6870229840278625,
|
3276 |
+
"eval_runtime": 57.3642,
|
3277 |
+
"eval_samples_per_second": 3.486,
|
3278 |
+
"eval_steps_per_second": 0.436,
|
3279 |
+
"step": 218
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 6.84375,
|
3283 |
+
"grad_norm": 0.9075127715796286,
|
3284 |
+
"learning_rate": 2e-05,
|
3285 |
+
"loss": 0.669,
|
3286 |
+
"step": 219
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 6.84375,
|
3290 |
+
"eval_loss": 0.6856889128684998,
|
3291 |
+
"eval_runtime": 57.4226,
|
3292 |
+
"eval_samples_per_second": 3.483,
|
3293 |
+
"eval_steps_per_second": 0.435,
|
3294 |
+
"step": 219
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 6.875,
|
3298 |
+
"grad_norm": 0.8464505810718659,
|
3299 |
+
"learning_rate": 2e-05,
|
3300 |
+
"loss": 0.686,
|
3301 |
+
"step": 220
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 6.875,
|
3305 |
+
"eval_loss": 0.6835823059082031,
|
3306 |
+
"eval_runtime": 57.2105,
|
3307 |
+
"eval_samples_per_second": 3.496,
|
3308 |
+
"eval_steps_per_second": 0.437,
|
3309 |
+
"step": 220
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 6.90625,
|
3313 |
+
"grad_norm": 0.7799140952562077,
|
3314 |
+
"learning_rate": 2e-05,
|
3315 |
+
"loss": 0.6503,
|
3316 |
+
"step": 221
|
3317 |
+
},
|
3318 |
+
{
|
3319 |
+
"epoch": 6.90625,
|
3320 |
+
"eval_loss": 0.6825523376464844,
|
3321 |
+
"eval_runtime": 57.0985,
|
3322 |
+
"eval_samples_per_second": 3.503,
|
3323 |
+
"eval_steps_per_second": 0.438,
|
3324 |
+
"step": 221
|
3325 |
+
},
|
3326 |
+
{
|
3327 |
+
"epoch": 6.9375,
|
3328 |
+
"grad_norm": 0.8495343756184095,
|
3329 |
+
"learning_rate": 2e-05,
|
3330 |
+
"loss": 0.6533,
|
3331 |
+
"step": 222
|
3332 |
+
},
|
3333 |
+
{
|
3334 |
+
"epoch": 6.9375,
|
3335 |
+
"eval_loss": 0.6813305616378784,
|
3336 |
+
"eval_runtime": 57.1896,
|
3337 |
+
"eval_samples_per_second": 3.497,
|
3338 |
+
"eval_steps_per_second": 0.437,
|
3339 |
+
"step": 222
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 6.96875,
|
3343 |
+
"grad_norm": 0.8191950862245413,
|
3344 |
+
"learning_rate": 2e-05,
|
3345 |
+
"loss": 0.6627,
|
3346 |
+
"step": 223
|
3347 |
+
},
|
3348 |
+
{
|
3349 |
+
"epoch": 6.96875,
|
3350 |
+
"eval_loss": 0.6800451874732971,
|
3351 |
+
"eval_runtime": 57.3904,
|
3352 |
+
"eval_samples_per_second": 3.485,
|
3353 |
+
"eval_steps_per_second": 0.436,
|
3354 |
+
"step": 223
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 7.0,
|
3358 |
+
"grad_norm": 0.8196747980504347,
|
3359 |
+
"learning_rate": 2e-05,
|
3360 |
+
"loss": 0.7337,
|
3361 |
+
"step": 224
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 7.0,
|
3365 |
+
"eval_loss": 0.6801488399505615,
|
3366 |
+
"eval_runtime": 59.0121,
|
3367 |
+
"eval_samples_per_second": 3.389,
|
3368 |
+
"eval_steps_per_second": 0.424,
|
3369 |
+
"step": 224
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 7.03125,
|
3373 |
+
"grad_norm": 0.7095908101379159,
|
3374 |
+
"learning_rate": 2e-05,
|
3375 |
+
"loss": 0.6203,
|
3376 |
+
"step": 225
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 7.03125,
|
3380 |
+
"eval_loss": 0.6816287040710449,
|
3381 |
+
"eval_runtime": 57.1754,
|
3382 |
+
"eval_samples_per_second": 3.498,
|
3383 |
+
"eval_steps_per_second": 0.437,
|
3384 |
+
"step": 225
|
3385 |
+
}
|
3386 |
+
],
|
3387 |
+
"logging_steps": 1.0,
|
3388 |
+
"max_steps": 256,
|
3389 |
+
"num_input_tokens_seen": 0,
|
3390 |
+
"num_train_epochs": 8,
|
3391 |
+
"save_steps": 5,
|
3392 |
+
"stateful_callbacks": {
|
3393 |
+
"TrainerControl": {
|
3394 |
+
"args": {
|
3395 |
+
"should_epoch_stop": false,
|
3396 |
+
"should_evaluate": false,
|
3397 |
+
"should_log": false,
|
3398 |
+
"should_save": true,
|
3399 |
+
"should_training_stop": false
|
3400 |
+
},
|
3401 |
+
"attributes": {}
|
3402 |
+
}
|
3403 |
+
},
|
3404 |
+
"total_flos": 67831824580608.0,
|
3405 |
+
"train_batch_size": 16,
|
3406 |
+
"trial_name": null,
|
3407 |
+
"trial_params": null
|
3408 |
+
}
|
checkpoint-225/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd8face63c0b0fee0d64c02b7b6deb6cbb7ff1b27dee7fdb6d6276b3d41ba9e1
|
3 |
+
size 8248
|
checkpoint-225/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-256/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: liuhaotian/llava-v1.6-vicuna-7b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
checkpoint-256/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"q_proj",
|
25 |
+
"v_proj",
|
26 |
+
"up_proj",
|
27 |
+
"down_proj",
|
28 |
+
"k_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
checkpoint-256/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e42c6018c8d89e2b84772e3b6a21cf706da55d99169a192738f12f89ba71cebd
|
3 |
+
size 84758312
|
checkpoint-256/global_step256/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13f4174cee5a18db7c8aa3afbfb0b54e0efa890238692cc8e8ff593b93e64f44
|
3 |
+
size 663858
|
checkpoint-256/global_step256/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e697833d291c42672133ad2bfb604fb8861a347fb478b5c7c201601b224d480
|
3 |
+
size 379899885
|
checkpoint-256/global_step256/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b58ae46f797be08f9b6fe52c07d89347245a8791e6dac747aac50cd8ea45529b
|
3 |
+
size 663858
|
checkpoint-256/global_step256/zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1fea6dcaf9f35f27540984646a589816195f08e9d695605c1121679ecc54b02
|
3 |
+
size 379899885
|
checkpoint-256/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step256
|
checkpoint-256/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7092e9412bbe15f3020a1e91bc995c3dbf32a8ff0b6800be29b4fa3a746c9125
|
3 |
+
size 14512
|
checkpoint-256/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99c3f04b04ed969c95bb8b5b5e0e1833c53751d2a75db6933d4a3236b8693221
|
3 |
+
size 14512
|
checkpoint-256/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-256/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
checkpoint-256/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": "<unk>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
checkpoint-256/trainer_state.json
ADDED
@@ -0,0 +1,3873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6816287040710449,
|
3 |
+
"best_model_checkpoint": "./checkpoints/llava-v1.6-vicuna-7b/checkpoint-225",
|
4 |
+
"epoch": 8.0,
|
5 |
+
"eval_steps": 1.0,
|
6 |
+
"global_step": 256,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03125,
|
13 |
+
"grad_norm": 1.3320099054231718,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.3851,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03125,
|
20 |
+
"eval_loss": 1.3910757303237915,
|
21 |
+
"eval_runtime": 63.0135,
|
22 |
+
"eval_samples_per_second": 3.174,
|
23 |
+
"eval_steps_per_second": 0.397,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0625,
|
28 |
+
"grad_norm": 1.0473401758450829,
|
29 |
+
"learning_rate": 8.613531161467863e-06,
|
30 |
+
"loss": 1.3255,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.0625,
|
35 |
+
"eval_loss": 1.3910757303237915,
|
36 |
+
"eval_runtime": 56.9747,
|
37 |
+
"eval_samples_per_second": 3.51,
|
38 |
+
"eval_steps_per_second": 0.439,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.09375,
|
43 |
+
"grad_norm": 1.0429876090069883,
|
44 |
+
"learning_rate": 1.3652123889719709e-05,
|
45 |
+
"loss": 1.3737,
|
46 |
+
"step": 3
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.09375,
|
50 |
+
"eval_loss": 1.3638323545455933,
|
51 |
+
"eval_runtime": 56.6988,
|
52 |
+
"eval_samples_per_second": 3.527,
|
53 |
+
"eval_steps_per_second": 0.441,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.125,
|
58 |
+
"grad_norm": 0.9193695742967616,
|
59 |
+
"learning_rate": 1.7227062322935725e-05,
|
60 |
+
"loss": 1.3309,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.125,
|
65 |
+
"eval_loss": 1.3227791786193848,
|
66 |
+
"eval_runtime": 56.6188,
|
67 |
+
"eval_samples_per_second": 3.532,
|
68 |
+
"eval_steps_per_second": 0.442,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15625,
|
73 |
+
"grad_norm": 1.0043594584185398,
|
74 |
+
"learning_rate": 2e-05,
|
75 |
+
"loss": 1.2984,
|
76 |
+
"step": 5
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.15625,
|
80 |
+
"eval_loss": 1.2728056907653809,
|
81 |
+
"eval_runtime": 58.8213,
|
82 |
+
"eval_samples_per_second": 3.4,
|
83 |
+
"eval_steps_per_second": 0.425,
|
84 |
+
"step": 5
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.1875,
|
88 |
+
"grad_norm": 0.8222566364005439,
|
89 |
+
"learning_rate": 2e-05,
|
90 |
+
"loss": 1.2639,
|
91 |
+
"step": 6
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.1875,
|
95 |
+
"eval_loss": 1.2296103239059448,
|
96 |
+
"eval_runtime": 56.6504,
|
97 |
+
"eval_samples_per_second": 3.53,
|
98 |
+
"eval_steps_per_second": 0.441,
|
99 |
+
"step": 6
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.21875,
|
103 |
+
"grad_norm": 0.6389176248800544,
|
104 |
+
"learning_rate": 2e-05,
|
105 |
+
"loss": 1.2314,
|
106 |
+
"step": 7
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.21875,
|
110 |
+
"eval_loss": 1.1983529329299927,
|
111 |
+
"eval_runtime": 56.5641,
|
112 |
+
"eval_samples_per_second": 3.536,
|
113 |
+
"eval_steps_per_second": 0.442,
|
114 |
+
"step": 7
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.25,
|
118 |
+
"grad_norm": 0.599291017991319,
|
119 |
+
"learning_rate": 2e-05,
|
120 |
+
"loss": 1.2037,
|
121 |
+
"step": 8
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.25,
|
125 |
+
"eval_loss": 1.1734061241149902,
|
126 |
+
"eval_runtime": 56.6005,
|
127 |
+
"eval_samples_per_second": 3.534,
|
128 |
+
"eval_steps_per_second": 0.442,
|
129 |
+
"step": 8
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28125,
|
133 |
+
"grad_norm": 0.4952974010296138,
|
134 |
+
"learning_rate": 2e-05,
|
135 |
+
"loss": 1.226,
|
136 |
+
"step": 9
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.28125,
|
140 |
+
"eval_loss": 1.1502536535263062,
|
141 |
+
"eval_runtime": 56.7524,
|
142 |
+
"eval_samples_per_second": 3.524,
|
143 |
+
"eval_steps_per_second": 0.441,
|
144 |
+
"step": 9
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.3125,
|
148 |
+
"grad_norm": 0.4967350606769311,
|
149 |
+
"learning_rate": 2e-05,
|
150 |
+
"loss": 1.1613,
|
151 |
+
"step": 10
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.3125,
|
155 |
+
"eval_loss": 1.127350091934204,
|
156 |
+
"eval_runtime": 56.7569,
|
157 |
+
"eval_samples_per_second": 3.524,
|
158 |
+
"eval_steps_per_second": 0.44,
|
159 |
+
"step": 10
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.34375,
|
163 |
+
"grad_norm": 0.43644425188108293,
|
164 |
+
"learning_rate": 2e-05,
|
165 |
+
"loss": 1.2077,
|
166 |
+
"step": 11
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.34375,
|
170 |
+
"eval_loss": 1.104610562324524,
|
171 |
+
"eval_runtime": 56.607,
|
172 |
+
"eval_samples_per_second": 3.533,
|
173 |
+
"eval_steps_per_second": 0.442,
|
174 |
+
"step": 11
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.375,
|
178 |
+
"grad_norm": 0.4763392566533296,
|
179 |
+
"learning_rate": 2e-05,
|
180 |
+
"loss": 1.1593,
|
181 |
+
"step": 12
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.375,
|
185 |
+
"eval_loss": 1.0827140808105469,
|
186 |
+
"eval_runtime": 56.6548,
|
187 |
+
"eval_samples_per_second": 3.53,
|
188 |
+
"eval_steps_per_second": 0.441,
|
189 |
+
"step": 12
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.40625,
|
193 |
+
"grad_norm": 0.49138280391100253,
|
194 |
+
"learning_rate": 2e-05,
|
195 |
+
"loss": 1.1679,
|
196 |
+
"step": 13
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.40625,
|
200 |
+
"eval_loss": 1.0621232986450195,
|
201 |
+
"eval_runtime": 56.8147,
|
202 |
+
"eval_samples_per_second": 3.52,
|
203 |
+
"eval_steps_per_second": 0.44,
|
204 |
+
"step": 13
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.4375,
|
208 |
+
"grad_norm": 0.4305508696222477,
|
209 |
+
"learning_rate": 2e-05,
|
210 |
+
"loss": 1.0008,
|
211 |
+
"step": 14
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.4375,
|
215 |
+
"eval_loss": 1.0437134504318237,
|
216 |
+
"eval_runtime": 56.7306,
|
217 |
+
"eval_samples_per_second": 3.525,
|
218 |
+
"eval_steps_per_second": 0.441,
|
219 |
+
"step": 14
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.46875,
|
223 |
+
"grad_norm": 0.39438622708065774,
|
224 |
+
"learning_rate": 2e-05,
|
225 |
+
"loss": 1.1206,
|
226 |
+
"step": 15
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.46875,
|
230 |
+
"eval_loss": 1.0277280807495117,
|
231 |
+
"eval_runtime": 56.6499,
|
232 |
+
"eval_samples_per_second": 3.53,
|
233 |
+
"eval_steps_per_second": 0.441,
|
234 |
+
"step": 15
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.5,
|
238 |
+
"grad_norm": 0.40300919769454296,
|
239 |
+
"learning_rate": 2e-05,
|
240 |
+
"loss": 1.0501,
|
241 |
+
"step": 16
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.5,
|
245 |
+
"eval_loss": 1.0134528875350952,
|
246 |
+
"eval_runtime": 56.3333,
|
247 |
+
"eval_samples_per_second": 3.55,
|
248 |
+
"eval_steps_per_second": 0.444,
|
249 |
+
"step": 16
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.53125,
|
253 |
+
"grad_norm": 0.35230570754831836,
|
254 |
+
"learning_rate": 2e-05,
|
255 |
+
"loss": 1.0593,
|
256 |
+
"step": 17
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.53125,
|
260 |
+
"eval_loss": 1.0004419088363647,
|
261 |
+
"eval_runtime": 56.6019,
|
262 |
+
"eval_samples_per_second": 3.533,
|
263 |
+
"eval_steps_per_second": 0.442,
|
264 |
+
"step": 17
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.5625,
|
268 |
+
"grad_norm": 0.37606931260721715,
|
269 |
+
"learning_rate": 2e-05,
|
270 |
+
"loss": 1.0482,
|
271 |
+
"step": 18
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.5625,
|
275 |
+
"eval_loss": 0.9879937767982483,
|
276 |
+
"eval_runtime": 56.6945,
|
277 |
+
"eval_samples_per_second": 3.528,
|
278 |
+
"eval_steps_per_second": 0.441,
|
279 |
+
"step": 18
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.59375,
|
283 |
+
"grad_norm": 0.2941404563021841,
|
284 |
+
"learning_rate": 2e-05,
|
285 |
+
"loss": 0.9707,
|
286 |
+
"step": 19
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.59375,
|
290 |
+
"eval_loss": 0.976818859577179,
|
291 |
+
"eval_runtime": 56.6805,
|
292 |
+
"eval_samples_per_second": 3.529,
|
293 |
+
"eval_steps_per_second": 0.441,
|
294 |
+
"step": 19
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.625,
|
298 |
+
"grad_norm": 0.2958263397509482,
|
299 |
+
"learning_rate": 2e-05,
|
300 |
+
"loss": 1.091,
|
301 |
+
"step": 20
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.625,
|
305 |
+
"eval_loss": 0.9669834971427917,
|
306 |
+
"eval_runtime": 57.6231,
|
307 |
+
"eval_samples_per_second": 3.471,
|
308 |
+
"eval_steps_per_second": 0.434,
|
309 |
+
"step": 20
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.65625,
|
313 |
+
"grad_norm": 0.2485896802049987,
|
314 |
+
"learning_rate": 2e-05,
|
315 |
+
"loss": 1.0041,
|
316 |
+
"step": 21
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.65625,
|
320 |
+
"eval_loss": 0.9583450555801392,
|
321 |
+
"eval_runtime": 56.5142,
|
322 |
+
"eval_samples_per_second": 3.539,
|
323 |
+
"eval_steps_per_second": 0.442,
|
324 |
+
"step": 21
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.6875,
|
328 |
+
"grad_norm": 0.296994298254859,
|
329 |
+
"learning_rate": 2e-05,
|
330 |
+
"loss": 1.055,
|
331 |
+
"step": 22
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6875,
|
335 |
+
"eval_loss": 0.9502925276756287,
|
336 |
+
"eval_runtime": 56.6393,
|
337 |
+
"eval_samples_per_second": 3.531,
|
338 |
+
"eval_steps_per_second": 0.441,
|
339 |
+
"step": 22
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.71875,
|
343 |
+
"grad_norm": 0.2499735192340966,
|
344 |
+
"learning_rate": 2e-05,
|
345 |
+
"loss": 1.04,
|
346 |
+
"step": 23
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.71875,
|
350 |
+
"eval_loss": 0.9427899122238159,
|
351 |
+
"eval_runtime": 56.5467,
|
352 |
+
"eval_samples_per_second": 3.537,
|
353 |
+
"eval_steps_per_second": 0.442,
|
354 |
+
"step": 23
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.75,
|
358 |
+
"grad_norm": 0.23614468035916372,
|
359 |
+
"learning_rate": 2e-05,
|
360 |
+
"loss": 1.0387,
|
361 |
+
"step": 24
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.75,
|
365 |
+
"eval_loss": 0.9359552264213562,
|
366 |
+
"eval_runtime": 56.8371,
|
367 |
+
"eval_samples_per_second": 3.519,
|
368 |
+
"eval_steps_per_second": 0.44,
|
369 |
+
"step": 24
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.78125,
|
373 |
+
"grad_norm": 0.2597610358499704,
|
374 |
+
"learning_rate": 2e-05,
|
375 |
+
"loss": 0.9821,
|
376 |
+
"step": 25
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.78125,
|
380 |
+
"eval_loss": 0.929139256477356,
|
381 |
+
"eval_runtime": 56.659,
|
382 |
+
"eval_samples_per_second": 3.53,
|
383 |
+
"eval_steps_per_second": 0.441,
|
384 |
+
"step": 25
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.8125,
|
388 |
+
"grad_norm": 0.2483654904520099,
|
389 |
+
"learning_rate": 2e-05,
|
390 |
+
"loss": 1.0139,
|
391 |
+
"step": 26
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.8125,
|
395 |
+
"eval_loss": 0.9226005673408508,
|
396 |
+
"eval_runtime": 56.4669,
|
397 |
+
"eval_samples_per_second": 3.542,
|
398 |
+
"eval_steps_per_second": 0.443,
|
399 |
+
"step": 26
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.84375,
|
403 |
+
"grad_norm": 0.2814780741041167,
|
404 |
+
"learning_rate": 2e-05,
|
405 |
+
"loss": 0.9374,
|
406 |
+
"step": 27
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.84375,
|
410 |
+
"eval_loss": 0.9160022735595703,
|
411 |
+
"eval_runtime": 56.6558,
|
412 |
+
"eval_samples_per_second": 3.53,
|
413 |
+
"eval_steps_per_second": 0.441,
|
414 |
+
"step": 27
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.875,
|
418 |
+
"grad_norm": 0.29993540247195477,
|
419 |
+
"learning_rate": 2e-05,
|
420 |
+
"loss": 0.948,
|
421 |
+
"step": 28
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.875,
|
425 |
+
"eval_loss": 0.9092594981193542,
|
426 |
+
"eval_runtime": 56.743,
|
427 |
+
"eval_samples_per_second": 3.525,
|
428 |
+
"eval_steps_per_second": 0.441,
|
429 |
+
"step": 28
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.90625,
|
433 |
+
"grad_norm": 0.24302264777949295,
|
434 |
+
"learning_rate": 2e-05,
|
435 |
+
"loss": 0.9676,
|
436 |
+
"step": 29
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.90625,
|
440 |
+
"eval_loss": 0.9028491377830505,
|
441 |
+
"eval_runtime": 56.802,
|
442 |
+
"eval_samples_per_second": 3.521,
|
443 |
+
"eval_steps_per_second": 0.44,
|
444 |
+
"step": 29
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.9375,
|
448 |
+
"grad_norm": 0.28001197555170687,
|
449 |
+
"learning_rate": 2e-05,
|
450 |
+
"loss": 1.0044,
|
451 |
+
"step": 30
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.9375,
|
455 |
+
"eval_loss": 0.8969234228134155,
|
456 |
+
"eval_runtime": 56.8402,
|
457 |
+
"eval_samples_per_second": 3.519,
|
458 |
+
"eval_steps_per_second": 0.44,
|
459 |
+
"step": 30
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.96875,
|
463 |
+
"grad_norm": 0.26990828196944483,
|
464 |
+
"learning_rate": 2e-05,
|
465 |
+
"loss": 0.8417,
|
466 |
+
"step": 31
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.96875,
|
470 |
+
"eval_loss": 0.890943169593811,
|
471 |
+
"eval_runtime": 56.9987,
|
472 |
+
"eval_samples_per_second": 3.509,
|
473 |
+
"eval_steps_per_second": 0.439,
|
474 |
+
"step": 31
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 1.0,
|
478 |
+
"grad_norm": 0.25976007498641823,
|
479 |
+
"learning_rate": 2e-05,
|
480 |
+
"loss": 0.95,
|
481 |
+
"step": 32
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 1.0,
|
485 |
+
"eval_loss": 0.8852173686027527,
|
486 |
+
"eval_runtime": 56.722,
|
487 |
+
"eval_samples_per_second": 3.526,
|
488 |
+
"eval_steps_per_second": 0.441,
|
489 |
+
"step": 32
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.03125,
|
493 |
+
"grad_norm": 0.29530149620990226,
|
494 |
+
"learning_rate": 2e-05,
|
495 |
+
"loss": 0.9931,
|
496 |
+
"step": 33
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 1.03125,
|
500 |
+
"eval_loss": 0.8795143961906433,
|
501 |
+
"eval_runtime": 56.8541,
|
502 |
+
"eval_samples_per_second": 3.518,
|
503 |
+
"eval_steps_per_second": 0.44,
|
504 |
+
"step": 33
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.0625,
|
508 |
+
"grad_norm": 0.2759239362577793,
|
509 |
+
"learning_rate": 2e-05,
|
510 |
+
"loss": 0.9978,
|
511 |
+
"step": 34
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 1.0625,
|
515 |
+
"eval_loss": 0.8741766214370728,
|
516 |
+
"eval_runtime": 56.7708,
|
517 |
+
"eval_samples_per_second": 3.523,
|
518 |
+
"eval_steps_per_second": 0.44,
|
519 |
+
"step": 34
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.09375,
|
523 |
+
"grad_norm": 0.246531740102282,
|
524 |
+
"learning_rate": 2e-05,
|
525 |
+
"loss": 1.0163,
|
526 |
+
"step": 35
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 1.09375,
|
530 |
+
"eval_loss": 0.8691757321357727,
|
531 |
+
"eval_runtime": 56.8382,
|
532 |
+
"eval_samples_per_second": 3.519,
|
533 |
+
"eval_steps_per_second": 0.44,
|
534 |
+
"step": 35
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.125,
|
538 |
+
"grad_norm": 0.2646078522027086,
|
539 |
+
"learning_rate": 2e-05,
|
540 |
+
"loss": 0.971,
|
541 |
+
"step": 36
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.125,
|
545 |
+
"eval_loss": 0.8643682599067688,
|
546 |
+
"eval_runtime": 56.689,
|
547 |
+
"eval_samples_per_second": 3.528,
|
548 |
+
"eval_steps_per_second": 0.441,
|
549 |
+
"step": 36
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.15625,
|
553 |
+
"grad_norm": 0.2395171492146917,
|
554 |
+
"learning_rate": 2e-05,
|
555 |
+
"loss": 0.9227,
|
556 |
+
"step": 37
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 1.15625,
|
560 |
+
"eval_loss": 0.8600785136222839,
|
561 |
+
"eval_runtime": 56.72,
|
562 |
+
"eval_samples_per_second": 3.526,
|
563 |
+
"eval_steps_per_second": 0.441,
|
564 |
+
"step": 37
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 1.1875,
|
568 |
+
"grad_norm": 0.28215229152733834,
|
569 |
+
"learning_rate": 2e-05,
|
570 |
+
"loss": 0.9308,
|
571 |
+
"step": 38
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 1.1875,
|
575 |
+
"eval_loss": 0.8562959432601929,
|
576 |
+
"eval_runtime": 56.8289,
|
577 |
+
"eval_samples_per_second": 3.519,
|
578 |
+
"eval_steps_per_second": 0.44,
|
579 |
+
"step": 38
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.21875,
|
583 |
+
"grad_norm": 0.27116244597267625,
|
584 |
+
"learning_rate": 2e-05,
|
585 |
+
"loss": 0.9563,
|
586 |
+
"step": 39
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 1.21875,
|
590 |
+
"eval_loss": 0.8526366949081421,
|
591 |
+
"eval_runtime": 56.6829,
|
592 |
+
"eval_samples_per_second": 3.528,
|
593 |
+
"eval_steps_per_second": 0.441,
|
594 |
+
"step": 39
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.25,
|
598 |
+
"grad_norm": 0.2623711894386991,
|
599 |
+
"learning_rate": 2e-05,
|
600 |
+
"loss": 0.9535,
|
601 |
+
"step": 40
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.25,
|
605 |
+
"eval_loss": 0.8490655422210693,
|
606 |
+
"eval_runtime": 56.6874,
|
607 |
+
"eval_samples_per_second": 3.528,
|
608 |
+
"eval_steps_per_second": 0.441,
|
609 |
+
"step": 40
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.28125,
|
613 |
+
"grad_norm": 0.27251908150193377,
|
614 |
+
"learning_rate": 2e-05,
|
615 |
+
"loss": 0.9287,
|
616 |
+
"step": 41
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 1.28125,
|
620 |
+
"eval_loss": 0.8451938629150391,
|
621 |
+
"eval_runtime": 56.7117,
|
622 |
+
"eval_samples_per_second": 3.527,
|
623 |
+
"eval_steps_per_second": 0.441,
|
624 |
+
"step": 41
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 1.3125,
|
628 |
+
"grad_norm": 0.2642817191103673,
|
629 |
+
"learning_rate": 2e-05,
|
630 |
+
"loss": 0.9186,
|
631 |
+
"step": 42
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.3125,
|
635 |
+
"eval_loss": 0.8413894772529602,
|
636 |
+
"eval_runtime": 56.9042,
|
637 |
+
"eval_samples_per_second": 3.515,
|
638 |
+
"eval_steps_per_second": 0.439,
|
639 |
+
"step": 42
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.34375,
|
643 |
+
"grad_norm": 0.26857391288606197,
|
644 |
+
"learning_rate": 2e-05,
|
645 |
+
"loss": 0.8792,
|
646 |
+
"step": 43
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.34375,
|
650 |
+
"eval_loss": 0.8373947739601135,
|
651 |
+
"eval_runtime": 56.7211,
|
652 |
+
"eval_samples_per_second": 3.526,
|
653 |
+
"eval_steps_per_second": 0.441,
|
654 |
+
"step": 43
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.375,
|
658 |
+
"grad_norm": 0.2474531366673803,
|
659 |
+
"learning_rate": 2e-05,
|
660 |
+
"loss": 0.8965,
|
661 |
+
"step": 44
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.375,
|
665 |
+
"eval_loss": 0.8339560031890869,
|
666 |
+
"eval_runtime": 56.8277,
|
667 |
+
"eval_samples_per_second": 3.519,
|
668 |
+
"eval_steps_per_second": 0.44,
|
669 |
+
"step": 44
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.40625,
|
673 |
+
"grad_norm": 0.26467660282496797,
|
674 |
+
"learning_rate": 2e-05,
|
675 |
+
"loss": 0.8762,
|
676 |
+
"step": 45
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.40625,
|
680 |
+
"eval_loss": 0.8309465050697327,
|
681 |
+
"eval_runtime": 56.7019,
|
682 |
+
"eval_samples_per_second": 3.527,
|
683 |
+
"eval_steps_per_second": 0.441,
|
684 |
+
"step": 45
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 1.4375,
|
688 |
+
"grad_norm": 0.2652288034609541,
|
689 |
+
"learning_rate": 2e-05,
|
690 |
+
"loss": 0.9118,
|
691 |
+
"step": 46
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 1.4375,
|
695 |
+
"eval_loss": 0.8279169201850891,
|
696 |
+
"eval_runtime": 56.6271,
|
697 |
+
"eval_samples_per_second": 3.532,
|
698 |
+
"eval_steps_per_second": 0.441,
|
699 |
+
"step": 46
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.46875,
|
703 |
+
"grad_norm": 0.27355995161173785,
|
704 |
+
"learning_rate": 2e-05,
|
705 |
+
"loss": 0.9249,
|
706 |
+
"step": 47
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.46875,
|
710 |
+
"eval_loss": 0.8252391219139099,
|
711 |
+
"eval_runtime": 56.6323,
|
712 |
+
"eval_samples_per_second": 3.532,
|
713 |
+
"eval_steps_per_second": 0.441,
|
714 |
+
"step": 47
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 1.5,
|
718 |
+
"grad_norm": 0.2588399009432225,
|
719 |
+
"learning_rate": 2e-05,
|
720 |
+
"loss": 0.8359,
|
721 |
+
"step": 48
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.5,
|
725 |
+
"eval_loss": 0.8225956559181213,
|
726 |
+
"eval_runtime": 58.0142,
|
727 |
+
"eval_samples_per_second": 3.447,
|
728 |
+
"eval_steps_per_second": 0.431,
|
729 |
+
"step": 48
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.53125,
|
733 |
+
"grad_norm": 0.28116473918910634,
|
734 |
+
"learning_rate": 2e-05,
|
735 |
+
"loss": 0.846,
|
736 |
+
"step": 49
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 1.53125,
|
740 |
+
"eval_loss": 0.8198111057281494,
|
741 |
+
"eval_runtime": 56.6785,
|
742 |
+
"eval_samples_per_second": 3.529,
|
743 |
+
"eval_steps_per_second": 0.441,
|
744 |
+
"step": 49
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.5625,
|
748 |
+
"grad_norm": 0.30791508615928687,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.8364,
|
751 |
+
"step": 50
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.5625,
|
755 |
+
"eval_loss": 0.816419243812561,
|
756 |
+
"eval_runtime": 56.7867,
|
757 |
+
"eval_samples_per_second": 3.522,
|
758 |
+
"eval_steps_per_second": 0.44,
|
759 |
+
"step": 50
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.59375,
|
763 |
+
"grad_norm": 0.2635774938006065,
|
764 |
+
"learning_rate": 2e-05,
|
765 |
+
"loss": 0.8565,
|
766 |
+
"step": 51
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.59375,
|
770 |
+
"eval_loss": 0.8128839731216431,
|
771 |
+
"eval_runtime": 56.5904,
|
772 |
+
"eval_samples_per_second": 3.534,
|
773 |
+
"eval_steps_per_second": 0.442,
|
774 |
+
"step": 51
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 1.625,
|
778 |
+
"grad_norm": 0.25740594308086223,
|
779 |
+
"learning_rate": 2e-05,
|
780 |
+
"loss": 0.7573,
|
781 |
+
"step": 52
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.625,
|
785 |
+
"eval_loss": 0.8096449971199036,
|
786 |
+
"eval_runtime": 56.7381,
|
787 |
+
"eval_samples_per_second": 3.525,
|
788 |
+
"eval_steps_per_second": 0.441,
|
789 |
+
"step": 52
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.65625,
|
793 |
+
"grad_norm": 0.25917235006885775,
|
794 |
+
"learning_rate": 2e-05,
|
795 |
+
"loss": 0.8982,
|
796 |
+
"step": 53
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.65625,
|
800 |
+
"eval_loss": 0.8064478039741516,
|
801 |
+
"eval_runtime": 57.4343,
|
802 |
+
"eval_samples_per_second": 3.482,
|
803 |
+
"eval_steps_per_second": 0.435,
|
804 |
+
"step": 53
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 1.6875,
|
808 |
+
"grad_norm": 0.2831937064873763,
|
809 |
+
"learning_rate": 2e-05,
|
810 |
+
"loss": 0.8781,
|
811 |
+
"step": 54
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.6875,
|
815 |
+
"eval_loss": 0.8034397959709167,
|
816 |
+
"eval_runtime": 56.8346,
|
817 |
+
"eval_samples_per_second": 3.519,
|
818 |
+
"eval_steps_per_second": 0.44,
|
819 |
+
"step": 54
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.71875,
|
823 |
+
"grad_norm": 0.2863024186152095,
|
824 |
+
"learning_rate": 2e-05,
|
825 |
+
"loss": 0.8861,
|
826 |
+
"step": 55
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.71875,
|
830 |
+
"eval_loss": 0.800960898399353,
|
831 |
+
"eval_runtime": 56.7424,
|
832 |
+
"eval_samples_per_second": 3.525,
|
833 |
+
"eval_steps_per_second": 0.441,
|
834 |
+
"step": 55
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 1.75,
|
838 |
+
"grad_norm": 0.28320211213029406,
|
839 |
+
"learning_rate": 2e-05,
|
840 |
+
"loss": 0.9514,
|
841 |
+
"step": 56
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.75,
|
845 |
+
"eval_loss": 0.7988448143005371,
|
846 |
+
"eval_runtime": 57.0405,
|
847 |
+
"eval_samples_per_second": 3.506,
|
848 |
+
"eval_steps_per_second": 0.438,
|
849 |
+
"step": 56
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.78125,
|
853 |
+
"grad_norm": 0.3204132014824286,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.8947,
|
856 |
+
"step": 57
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.78125,
|
860 |
+
"eval_loss": 0.7971951365470886,
|
861 |
+
"eval_runtime": 57.1716,
|
862 |
+
"eval_samples_per_second": 3.498,
|
863 |
+
"eval_steps_per_second": 0.437,
|
864 |
+
"step": 57
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 1.8125,
|
868 |
+
"grad_norm": 0.29386668880511096,
|
869 |
+
"learning_rate": 2e-05,
|
870 |
+
"loss": 0.9125,
|
871 |
+
"step": 58
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.8125,
|
875 |
+
"eval_loss": 0.7956165075302124,
|
876 |
+
"eval_runtime": 57.3457,
|
877 |
+
"eval_samples_per_second": 3.488,
|
878 |
+
"eval_steps_per_second": 0.436,
|
879 |
+
"step": 58
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.84375,
|
883 |
+
"grad_norm": 0.31091076146467406,
|
884 |
+
"learning_rate": 2e-05,
|
885 |
+
"loss": 0.8638,
|
886 |
+
"step": 59
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 1.84375,
|
890 |
+
"eval_loss": 0.7935267090797424,
|
891 |
+
"eval_runtime": 57.373,
|
892 |
+
"eval_samples_per_second": 3.486,
|
893 |
+
"eval_steps_per_second": 0.436,
|
894 |
+
"step": 59
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 1.875,
|
898 |
+
"grad_norm": 0.28779917523565474,
|
899 |
+
"learning_rate": 2e-05,
|
900 |
+
"loss": 0.9113,
|
901 |
+
"step": 60
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.875,
|
905 |
+
"eval_loss": 0.7914787530899048,
|
906 |
+
"eval_runtime": 57.2668,
|
907 |
+
"eval_samples_per_second": 3.492,
|
908 |
+
"eval_steps_per_second": 0.437,
|
909 |
+
"step": 60
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.90625,
|
913 |
+
"grad_norm": 0.31820258275619673,
|
914 |
+
"learning_rate": 2e-05,
|
915 |
+
"loss": 0.8113,
|
916 |
+
"step": 61
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 1.90625,
|
920 |
+
"eval_loss": 0.788929283618927,
|
921 |
+
"eval_runtime": 57.2581,
|
922 |
+
"eval_samples_per_second": 3.493,
|
923 |
+
"eval_steps_per_second": 0.437,
|
924 |
+
"step": 61
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 1.9375,
|
928 |
+
"grad_norm": 0.30186200117869055,
|
929 |
+
"learning_rate": 2e-05,
|
930 |
+
"loss": 0.8685,
|
931 |
+
"step": 62
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 1.9375,
|
935 |
+
"eval_loss": 0.7862411737442017,
|
936 |
+
"eval_runtime": 57.2688,
|
937 |
+
"eval_samples_per_second": 3.492,
|
938 |
+
"eval_steps_per_second": 0.437,
|
939 |
+
"step": 62
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.96875,
|
943 |
+
"grad_norm": 0.27549296702686904,
|
944 |
+
"learning_rate": 2e-05,
|
945 |
+
"loss": 0.911,
|
946 |
+
"step": 63
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.96875,
|
950 |
+
"eval_loss": 0.7838772535324097,
|
951 |
+
"eval_runtime": 57.5102,
|
952 |
+
"eval_samples_per_second": 3.478,
|
953 |
+
"eval_steps_per_second": 0.435,
|
954 |
+
"step": 63
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.0,
|
958 |
+
"grad_norm": 0.29444542350221403,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.8877,
|
961 |
+
"step": 64
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.0,
|
965 |
+
"eval_loss": 0.7814672589302063,
|
966 |
+
"eval_runtime": 57.3342,
|
967 |
+
"eval_samples_per_second": 3.488,
|
968 |
+
"eval_steps_per_second": 0.436,
|
969 |
+
"step": 64
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 2.03125,
|
973 |
+
"grad_norm": 0.32976362380066954,
|
974 |
+
"learning_rate": 2e-05,
|
975 |
+
"loss": 0.836,
|
976 |
+
"step": 65
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 2.03125,
|
980 |
+
"eval_loss": 0.7788661122322083,
|
981 |
+
"eval_runtime": 57.6392,
|
982 |
+
"eval_samples_per_second": 3.47,
|
983 |
+
"eval_steps_per_second": 0.434,
|
984 |
+
"step": 65
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 2.0625,
|
988 |
+
"grad_norm": 0.3091109685624876,
|
989 |
+
"learning_rate": 2e-05,
|
990 |
+
"loss": 0.8565,
|
991 |
+
"step": 66
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 2.0625,
|
995 |
+
"eval_loss": 0.7769085764884949,
|
996 |
+
"eval_runtime": 57.2017,
|
997 |
+
"eval_samples_per_second": 3.496,
|
998 |
+
"eval_steps_per_second": 0.437,
|
999 |
+
"step": 66
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.09375,
|
1003 |
+
"grad_norm": 0.3011651623444141,
|
1004 |
+
"learning_rate": 2e-05,
|
1005 |
+
"loss": 0.8265,
|
1006 |
+
"step": 67
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 2.09375,
|
1010 |
+
"eval_loss": 0.7751161456108093,
|
1011 |
+
"eval_runtime": 57.4125,
|
1012 |
+
"eval_samples_per_second": 3.484,
|
1013 |
+
"eval_steps_per_second": 0.435,
|
1014 |
+
"step": 67
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 2.125,
|
1018 |
+
"grad_norm": 0.28278958612422994,
|
1019 |
+
"learning_rate": 2e-05,
|
1020 |
+
"loss": 0.8893,
|
1021 |
+
"step": 68
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 2.125,
|
1025 |
+
"eval_loss": 0.7736042737960815,
|
1026 |
+
"eval_runtime": 57.2826,
|
1027 |
+
"eval_samples_per_second": 3.491,
|
1028 |
+
"eval_steps_per_second": 0.436,
|
1029 |
+
"step": 68
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.15625,
|
1033 |
+
"grad_norm": 0.30212533045014006,
|
1034 |
+
"learning_rate": 2e-05,
|
1035 |
+
"loss": 0.8256,
|
1036 |
+
"step": 69
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 2.15625,
|
1040 |
+
"eval_loss": 0.7718043327331543,
|
1041 |
+
"eval_runtime": 59.4842,
|
1042 |
+
"eval_samples_per_second": 3.362,
|
1043 |
+
"eval_steps_per_second": 0.42,
|
1044 |
+
"step": 69
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 2.1875,
|
1048 |
+
"grad_norm": 0.32231592883907934,
|
1049 |
+
"learning_rate": 2e-05,
|
1050 |
+
"loss": 0.7754,
|
1051 |
+
"step": 70
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 2.1875,
|
1055 |
+
"eval_loss": 0.7697712779045105,
|
1056 |
+
"eval_runtime": 57.2127,
|
1057 |
+
"eval_samples_per_second": 3.496,
|
1058 |
+
"eval_steps_per_second": 0.437,
|
1059 |
+
"step": 70
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.21875,
|
1063 |
+
"grad_norm": 0.29880148326318595,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.864,
|
1066 |
+
"step": 71
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.21875,
|
1070 |
+
"eval_loss": 0.7679712176322937,
|
1071 |
+
"eval_runtime": 57.1052,
|
1072 |
+
"eval_samples_per_second": 3.502,
|
1073 |
+
"eval_steps_per_second": 0.438,
|
1074 |
+
"step": 71
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 2.25,
|
1078 |
+
"grad_norm": 0.30389759178870646,
|
1079 |
+
"learning_rate": 2e-05,
|
1080 |
+
"loss": 0.7831,
|
1081 |
+
"step": 72
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 2.25,
|
1085 |
+
"eval_loss": 0.7662644386291504,
|
1086 |
+
"eval_runtime": 57.37,
|
1087 |
+
"eval_samples_per_second": 3.486,
|
1088 |
+
"eval_steps_per_second": 0.436,
|
1089 |
+
"step": 72
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 2.28125,
|
1093 |
+
"grad_norm": 0.3424258847516451,
|
1094 |
+
"learning_rate": 2e-05,
|
1095 |
+
"loss": 0.8311,
|
1096 |
+
"step": 73
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 2.28125,
|
1100 |
+
"eval_loss": 0.7646127343177795,
|
1101 |
+
"eval_runtime": 57.1884,
|
1102 |
+
"eval_samples_per_second": 3.497,
|
1103 |
+
"eval_steps_per_second": 0.437,
|
1104 |
+
"step": 73
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 2.3125,
|
1108 |
+
"grad_norm": 0.2831654885374943,
|
1109 |
+
"learning_rate": 2e-05,
|
1110 |
+
"loss": 0.8261,
|
1111 |
+
"step": 74
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 2.3125,
|
1115 |
+
"eval_loss": 0.7631255388259888,
|
1116 |
+
"eval_runtime": 57.4573,
|
1117 |
+
"eval_samples_per_second": 3.481,
|
1118 |
+
"eval_steps_per_second": 0.435,
|
1119 |
+
"step": 74
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 2.34375,
|
1123 |
+
"grad_norm": 0.29894569677081223,
|
1124 |
+
"learning_rate": 2e-05,
|
1125 |
+
"loss": 0.8801,
|
1126 |
+
"step": 75
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 2.34375,
|
1130 |
+
"eval_loss": 0.7617875933647156,
|
1131 |
+
"eval_runtime": 57.1641,
|
1132 |
+
"eval_samples_per_second": 3.499,
|
1133 |
+
"eval_steps_per_second": 0.437,
|
1134 |
+
"step": 75
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 2.375,
|
1138 |
+
"grad_norm": 0.3030991848050202,
|
1139 |
+
"learning_rate": 2e-05,
|
1140 |
+
"loss": 0.7921,
|
1141 |
+
"step": 76
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 2.375,
|
1145 |
+
"eval_loss": 0.7605040073394775,
|
1146 |
+
"eval_runtime": 57.0991,
|
1147 |
+
"eval_samples_per_second": 3.503,
|
1148 |
+
"eval_steps_per_second": 0.438,
|
1149 |
+
"step": 76
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 2.40625,
|
1153 |
+
"grad_norm": 0.30216971620226146,
|
1154 |
+
"learning_rate": 2e-05,
|
1155 |
+
"loss": 0.8527,
|
1156 |
+
"step": 77
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 2.40625,
|
1160 |
+
"eval_loss": 0.7591890096664429,
|
1161 |
+
"eval_runtime": 58.6087,
|
1162 |
+
"eval_samples_per_second": 3.412,
|
1163 |
+
"eval_steps_per_second": 0.427,
|
1164 |
+
"step": 77
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.4375,
|
1168 |
+
"grad_norm": 0.34907486616204614,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.841,
|
1171 |
+
"step": 78
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.4375,
|
1175 |
+
"eval_loss": 0.7577351331710815,
|
1176 |
+
"eval_runtime": 59.509,
|
1177 |
+
"eval_samples_per_second": 3.361,
|
1178 |
+
"eval_steps_per_second": 0.42,
|
1179 |
+
"step": 78
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 2.46875,
|
1183 |
+
"grad_norm": 0.3356288667630128,
|
1184 |
+
"learning_rate": 2e-05,
|
1185 |
+
"loss": 0.8417,
|
1186 |
+
"step": 79
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 2.46875,
|
1190 |
+
"eval_loss": 0.7571098208427429,
|
1191 |
+
"eval_runtime": 57.4972,
|
1192 |
+
"eval_samples_per_second": 3.478,
|
1193 |
+
"eval_steps_per_second": 0.435,
|
1194 |
+
"step": 79
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 2.5,
|
1198 |
+
"grad_norm": 0.3547770718977253,
|
1199 |
+
"learning_rate": 2e-05,
|
1200 |
+
"loss": 0.8865,
|
1201 |
+
"step": 80
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 2.5,
|
1205 |
+
"eval_loss": 0.7565757632255554,
|
1206 |
+
"eval_runtime": 57.4262,
|
1207 |
+
"eval_samples_per_second": 3.483,
|
1208 |
+
"eval_steps_per_second": 0.435,
|
1209 |
+
"step": 80
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 2.53125,
|
1213 |
+
"grad_norm": 0.36400071548952273,
|
1214 |
+
"learning_rate": 2e-05,
|
1215 |
+
"loss": 0.8201,
|
1216 |
+
"step": 81
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 2.53125,
|
1220 |
+
"eval_loss": 0.7553688287734985,
|
1221 |
+
"eval_runtime": 59.6772,
|
1222 |
+
"eval_samples_per_second": 3.351,
|
1223 |
+
"eval_steps_per_second": 0.419,
|
1224 |
+
"step": 81
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 2.5625,
|
1228 |
+
"grad_norm": 0.32432854183732784,
|
1229 |
+
"learning_rate": 2e-05,
|
1230 |
+
"loss": 0.8705,
|
1231 |
+
"step": 82
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 2.5625,
|
1235 |
+
"eval_loss": 0.7540337443351746,
|
1236 |
+
"eval_runtime": 58.1967,
|
1237 |
+
"eval_samples_per_second": 3.437,
|
1238 |
+
"eval_steps_per_second": 0.43,
|
1239 |
+
"step": 82
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 2.59375,
|
1243 |
+
"grad_norm": 0.3367161155473714,
|
1244 |
+
"learning_rate": 2e-05,
|
1245 |
+
"loss": 0.8225,
|
1246 |
+
"step": 83
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 2.59375,
|
1250 |
+
"eval_loss": 0.752601683139801,
|
1251 |
+
"eval_runtime": 59.728,
|
1252 |
+
"eval_samples_per_second": 3.349,
|
1253 |
+
"eval_steps_per_second": 0.419,
|
1254 |
+
"step": 83
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 2.625,
|
1258 |
+
"grad_norm": 0.3542073894911913,
|
1259 |
+
"learning_rate": 2e-05,
|
1260 |
+
"loss": 0.7887,
|
1261 |
+
"step": 84
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 2.625,
|
1265 |
+
"eval_loss": 0.750983715057373,
|
1266 |
+
"eval_runtime": 58.2468,
|
1267 |
+
"eval_samples_per_second": 3.434,
|
1268 |
+
"eval_steps_per_second": 0.429,
|
1269 |
+
"step": 84
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.65625,
|
1273 |
+
"grad_norm": 0.3387577198880303,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.7594,
|
1276 |
+
"step": 85
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.65625,
|
1280 |
+
"eval_loss": 0.7495383620262146,
|
1281 |
+
"eval_runtime": 58.3457,
|
1282 |
+
"eval_samples_per_second": 3.428,
|
1283 |
+
"eval_steps_per_second": 0.428,
|
1284 |
+
"step": 85
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 2.6875,
|
1288 |
+
"grad_norm": 0.381221735797731,
|
1289 |
+
"learning_rate": 2e-05,
|
1290 |
+
"loss": 0.7911,
|
1291 |
+
"step": 86
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 2.6875,
|
1295 |
+
"eval_loss": 0.7477438449859619,
|
1296 |
+
"eval_runtime": 58.0584,
|
1297 |
+
"eval_samples_per_second": 3.445,
|
1298 |
+
"eval_steps_per_second": 0.431,
|
1299 |
+
"step": 86
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 2.71875,
|
1303 |
+
"grad_norm": 0.3782280426863171,
|
1304 |
+
"learning_rate": 2e-05,
|
1305 |
+
"loss": 0.8115,
|
1306 |
+
"step": 87
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 2.71875,
|
1310 |
+
"eval_loss": 0.7464295029640198,
|
1311 |
+
"eval_runtime": 57.9835,
|
1312 |
+
"eval_samples_per_second": 3.449,
|
1313 |
+
"eval_steps_per_second": 0.431,
|
1314 |
+
"step": 87
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 2.75,
|
1318 |
+
"grad_norm": 0.3751127153118298,
|
1319 |
+
"learning_rate": 2e-05,
|
1320 |
+
"loss": 0.8896,
|
1321 |
+
"step": 88
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 2.75,
|
1325 |
+
"eval_loss": 0.7451103329658508,
|
1326 |
+
"eval_runtime": 58.1947,
|
1327 |
+
"eval_samples_per_second": 3.437,
|
1328 |
+
"eval_steps_per_second": 0.43,
|
1329 |
+
"step": 88
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 2.78125,
|
1333 |
+
"grad_norm": 0.3580034870691801,
|
1334 |
+
"learning_rate": 2e-05,
|
1335 |
+
"loss": 0.7964,
|
1336 |
+
"step": 89
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 2.78125,
|
1340 |
+
"eval_loss": 0.744097113609314,
|
1341 |
+
"eval_runtime": 58.1644,
|
1342 |
+
"eval_samples_per_second": 3.439,
|
1343 |
+
"eval_steps_per_second": 0.43,
|
1344 |
+
"step": 89
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 2.8125,
|
1348 |
+
"grad_norm": 0.3630926811819107,
|
1349 |
+
"learning_rate": 2e-05,
|
1350 |
+
"loss": 0.848,
|
1351 |
+
"step": 90
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 2.8125,
|
1355 |
+
"eval_loss": 0.7432359457015991,
|
1356 |
+
"eval_runtime": 58.0811,
|
1357 |
+
"eval_samples_per_second": 3.443,
|
1358 |
+
"eval_steps_per_second": 0.43,
|
1359 |
+
"step": 90
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 2.84375,
|
1363 |
+
"grad_norm": 0.3668484035124972,
|
1364 |
+
"learning_rate": 2e-05,
|
1365 |
+
"loss": 0.7444,
|
1366 |
+
"step": 91
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 2.84375,
|
1370 |
+
"eval_loss": 0.7424789667129517,
|
1371 |
+
"eval_runtime": 59.6811,
|
1372 |
+
"eval_samples_per_second": 3.351,
|
1373 |
+
"eval_steps_per_second": 0.419,
|
1374 |
+
"step": 91
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.875,
|
1378 |
+
"grad_norm": 0.37526030248163283,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.8381,
|
1381 |
+
"step": 92
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.875,
|
1385 |
+
"eval_loss": 0.7417113780975342,
|
1386 |
+
"eval_runtime": 58.1209,
|
1387 |
+
"eval_samples_per_second": 3.441,
|
1388 |
+
"eval_steps_per_second": 0.43,
|
1389 |
+
"step": 92
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 2.90625,
|
1393 |
+
"grad_norm": 0.36285898832422037,
|
1394 |
+
"learning_rate": 2e-05,
|
1395 |
+
"loss": 0.7797,
|
1396 |
+
"step": 93
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 2.90625,
|
1400 |
+
"eval_loss": 0.7411203980445862,
|
1401 |
+
"eval_runtime": 58.3212,
|
1402 |
+
"eval_samples_per_second": 3.429,
|
1403 |
+
"eval_steps_per_second": 0.429,
|
1404 |
+
"step": 93
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 2.9375,
|
1408 |
+
"grad_norm": 0.39983168875602654,
|
1409 |
+
"learning_rate": 2e-05,
|
1410 |
+
"loss": 0.8571,
|
1411 |
+
"step": 94
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 2.9375,
|
1415 |
+
"eval_loss": 0.7402496933937073,
|
1416 |
+
"eval_runtime": 58.0746,
|
1417 |
+
"eval_samples_per_second": 3.444,
|
1418 |
+
"eval_steps_per_second": 0.43,
|
1419 |
+
"step": 94
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 2.96875,
|
1423 |
+
"grad_norm": 0.3697896026052261,
|
1424 |
+
"learning_rate": 2e-05,
|
1425 |
+
"loss": 0.7917,
|
1426 |
+
"step": 95
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 2.96875,
|
1430 |
+
"eval_loss": 0.7398749589920044,
|
1431 |
+
"eval_runtime": 59.8008,
|
1432 |
+
"eval_samples_per_second": 3.344,
|
1433 |
+
"eval_steps_per_second": 0.418,
|
1434 |
+
"step": 95
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 3.0,
|
1438 |
+
"grad_norm": 0.39419135002625816,
|
1439 |
+
"learning_rate": 2e-05,
|
1440 |
+
"loss": 0.7987,
|
1441 |
+
"step": 96
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 3.0,
|
1445 |
+
"eval_loss": 0.7384353876113892,
|
1446 |
+
"eval_runtime": 58.3389,
|
1447 |
+
"eval_samples_per_second": 3.428,
|
1448 |
+
"eval_steps_per_second": 0.429,
|
1449 |
+
"step": 96
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 3.03125,
|
1453 |
+
"grad_norm": 0.40732207424611727,
|
1454 |
+
"learning_rate": 2e-05,
|
1455 |
+
"loss": 0.7205,
|
1456 |
+
"step": 97
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 3.03125,
|
1460 |
+
"eval_loss": 0.73604416847229,
|
1461 |
+
"eval_runtime": 58.2114,
|
1462 |
+
"eval_samples_per_second": 3.436,
|
1463 |
+
"eval_steps_per_second": 0.429,
|
1464 |
+
"step": 97
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 3.0625,
|
1468 |
+
"grad_norm": 0.3641635271623762,
|
1469 |
+
"learning_rate": 2e-05,
|
1470 |
+
"loss": 0.8062,
|
1471 |
+
"step": 98
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 3.0625,
|
1475 |
+
"eval_loss": 0.7333144545555115,
|
1476 |
+
"eval_runtime": 59.7484,
|
1477 |
+
"eval_samples_per_second": 3.347,
|
1478 |
+
"eval_steps_per_second": 0.418,
|
1479 |
+
"step": 98
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 3.09375,
|
1483 |
+
"grad_norm": 0.3556866449584765,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.7681,
|
1486 |
+
"step": 99
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 3.09375,
|
1490 |
+
"eval_loss": 0.7306910157203674,
|
1491 |
+
"eval_runtime": 58.141,
|
1492 |
+
"eval_samples_per_second": 3.44,
|
1493 |
+
"eval_steps_per_second": 0.43,
|
1494 |
+
"step": 99
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 3.125,
|
1498 |
+
"grad_norm": 0.3826129743685834,
|
1499 |
+
"learning_rate": 2e-05,
|
1500 |
+
"loss": 0.7961,
|
1501 |
+
"step": 100
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 3.125,
|
1505 |
+
"eval_loss": 0.7283279895782471,
|
1506 |
+
"eval_runtime": 58.1482,
|
1507 |
+
"eval_samples_per_second": 3.439,
|
1508 |
+
"eval_steps_per_second": 0.43,
|
1509 |
+
"step": 100
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 3.15625,
|
1513 |
+
"grad_norm": 0.35166540759020914,
|
1514 |
+
"learning_rate": 2e-05,
|
1515 |
+
"loss": 0.7382,
|
1516 |
+
"step": 101
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 3.15625,
|
1520 |
+
"eval_loss": 0.7267993688583374,
|
1521 |
+
"eval_runtime": 57.8007,
|
1522 |
+
"eval_samples_per_second": 3.46,
|
1523 |
+
"eval_steps_per_second": 0.433,
|
1524 |
+
"step": 101
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 3.1875,
|
1528 |
+
"grad_norm": 0.38414476136018477,
|
1529 |
+
"learning_rate": 2e-05,
|
1530 |
+
"loss": 0.7999,
|
1531 |
+
"step": 102
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 3.1875,
|
1535 |
+
"eval_loss": 0.7261015176773071,
|
1536 |
+
"eval_runtime": 57.9723,
|
1537 |
+
"eval_samples_per_second": 3.45,
|
1538 |
+
"eval_steps_per_second": 0.431,
|
1539 |
+
"step": 102
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 3.21875,
|
1543 |
+
"grad_norm": 0.40218377868187477,
|
1544 |
+
"learning_rate": 2e-05,
|
1545 |
+
"loss": 0.8115,
|
1546 |
+
"step": 103
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 3.21875,
|
1550 |
+
"eval_loss": 0.7257917523384094,
|
1551 |
+
"eval_runtime": 58.0394,
|
1552 |
+
"eval_samples_per_second": 3.446,
|
1553 |
+
"eval_steps_per_second": 0.431,
|
1554 |
+
"step": 103
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 3.25,
|
1558 |
+
"grad_norm": 0.41934721904445194,
|
1559 |
+
"learning_rate": 2e-05,
|
1560 |
+
"loss": 0.7228,
|
1561 |
+
"step": 104
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 3.25,
|
1565 |
+
"eval_loss": 0.7251278758049011,
|
1566 |
+
"eval_runtime": 59.2828,
|
1567 |
+
"eval_samples_per_second": 3.374,
|
1568 |
+
"eval_steps_per_second": 0.422,
|
1569 |
+
"step": 104
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 3.28125,
|
1573 |
+
"grad_norm": 0.3882012129329853,
|
1574 |
+
"learning_rate": 2e-05,
|
1575 |
+
"loss": 0.7658,
|
1576 |
+
"step": 105
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 3.28125,
|
1580 |
+
"eval_loss": 0.724635899066925,
|
1581 |
+
"eval_runtime": 59.0543,
|
1582 |
+
"eval_samples_per_second": 3.387,
|
1583 |
+
"eval_steps_per_second": 0.423,
|
1584 |
+
"step": 105
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 3.3125,
|
1588 |
+
"grad_norm": 0.4068559748805906,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.7977,
|
1591 |
+
"step": 106
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 3.3125,
|
1595 |
+
"eval_loss": 0.7242235541343689,
|
1596 |
+
"eval_runtime": 58.5527,
|
1597 |
+
"eval_samples_per_second": 3.416,
|
1598 |
+
"eval_steps_per_second": 0.427,
|
1599 |
+
"step": 106
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 3.34375,
|
1603 |
+
"grad_norm": 0.4620335365938039,
|
1604 |
+
"learning_rate": 2e-05,
|
1605 |
+
"loss": 0.7015,
|
1606 |
+
"step": 107
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 3.34375,
|
1610 |
+
"eval_loss": 0.7226566076278687,
|
1611 |
+
"eval_runtime": 58.8135,
|
1612 |
+
"eval_samples_per_second": 3.401,
|
1613 |
+
"eval_steps_per_second": 0.425,
|
1614 |
+
"step": 107
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 3.375,
|
1618 |
+
"grad_norm": 0.4009314815042761,
|
1619 |
+
"learning_rate": 2e-05,
|
1620 |
+
"loss": 0.7488,
|
1621 |
+
"step": 108
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 3.375,
|
1625 |
+
"eval_loss": 0.7213454246520996,
|
1626 |
+
"eval_runtime": 58.735,
|
1627 |
+
"eval_samples_per_second": 3.405,
|
1628 |
+
"eval_steps_per_second": 0.426,
|
1629 |
+
"step": 108
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 3.40625,
|
1633 |
+
"grad_norm": 0.456822567760836,
|
1634 |
+
"learning_rate": 2e-05,
|
1635 |
+
"loss": 0.7307,
|
1636 |
+
"step": 109
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 3.40625,
|
1640 |
+
"eval_loss": 0.719496488571167,
|
1641 |
+
"eval_runtime": 58.9211,
|
1642 |
+
"eval_samples_per_second": 3.394,
|
1643 |
+
"eval_steps_per_second": 0.424,
|
1644 |
+
"step": 109
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 3.4375,
|
1648 |
+
"grad_norm": 0.45520197938839,
|
1649 |
+
"learning_rate": 2e-05,
|
1650 |
+
"loss": 0.7348,
|
1651 |
+
"step": 110
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 3.4375,
|
1655 |
+
"eval_loss": 0.7171263098716736,
|
1656 |
+
"eval_runtime": 58.9274,
|
1657 |
+
"eval_samples_per_second": 3.394,
|
1658 |
+
"eval_steps_per_second": 0.424,
|
1659 |
+
"step": 110
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 3.46875,
|
1663 |
+
"grad_norm": 0.4421606621837213,
|
1664 |
+
"learning_rate": 2e-05,
|
1665 |
+
"loss": 0.8011,
|
1666 |
+
"step": 111
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 3.46875,
|
1670 |
+
"eval_loss": 0.7155402898788452,
|
1671 |
+
"eval_runtime": 58.4009,
|
1672 |
+
"eval_samples_per_second": 3.425,
|
1673 |
+
"eval_steps_per_second": 0.428,
|
1674 |
+
"step": 111
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 3.5,
|
1678 |
+
"grad_norm": 0.4111011701354251,
|
1679 |
+
"learning_rate": 2e-05,
|
1680 |
+
"loss": 0.7829,
|
1681 |
+
"step": 112
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 3.5,
|
1685 |
+
"eval_loss": 0.714958667755127,
|
1686 |
+
"eval_runtime": 58.3143,
|
1687 |
+
"eval_samples_per_second": 3.43,
|
1688 |
+
"eval_steps_per_second": 0.429,
|
1689 |
+
"step": 112
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.53125,
|
1693 |
+
"grad_norm": 0.40366265866888357,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.8596,
|
1696 |
+
"step": 113
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.53125,
|
1700 |
+
"eval_loss": 0.7153159976005554,
|
1701 |
+
"eval_runtime": 58.5749,
|
1702 |
+
"eval_samples_per_second": 3.414,
|
1703 |
+
"eval_steps_per_second": 0.427,
|
1704 |
+
"step": 113
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 3.5625,
|
1708 |
+
"grad_norm": 0.44914251592864773,
|
1709 |
+
"learning_rate": 2e-05,
|
1710 |
+
"loss": 0.7268,
|
1711 |
+
"step": 114
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 3.5625,
|
1715 |
+
"eval_loss": 0.7159590721130371,
|
1716 |
+
"eval_runtime": 58.6872,
|
1717 |
+
"eval_samples_per_second": 3.408,
|
1718 |
+
"eval_steps_per_second": 0.426,
|
1719 |
+
"step": 114
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 3.59375,
|
1723 |
+
"grad_norm": 0.4062399312752312,
|
1724 |
+
"learning_rate": 2e-05,
|
1725 |
+
"loss": 0.7875,
|
1726 |
+
"step": 115
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 3.59375,
|
1730 |
+
"eval_loss": 0.7165355086326599,
|
1731 |
+
"eval_runtime": 58.4703,
|
1732 |
+
"eval_samples_per_second": 3.421,
|
1733 |
+
"eval_steps_per_second": 0.428,
|
1734 |
+
"step": 115
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 3.625,
|
1738 |
+
"grad_norm": 0.44817350106485787,
|
1739 |
+
"learning_rate": 2e-05,
|
1740 |
+
"loss": 0.7623,
|
1741 |
+
"step": 116
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 3.625,
|
1745 |
+
"eval_loss": 0.716560423374176,
|
1746 |
+
"eval_runtime": 58.5904,
|
1747 |
+
"eval_samples_per_second": 3.414,
|
1748 |
+
"eval_steps_per_second": 0.427,
|
1749 |
+
"step": 116
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 3.65625,
|
1753 |
+
"grad_norm": 0.4309671248224914,
|
1754 |
+
"learning_rate": 2e-05,
|
1755 |
+
"loss": 0.7604,
|
1756 |
+
"step": 117
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 3.65625,
|
1760 |
+
"eval_loss": 0.7165713310241699,
|
1761 |
+
"eval_runtime": 58.5214,
|
1762 |
+
"eval_samples_per_second": 3.418,
|
1763 |
+
"eval_steps_per_second": 0.427,
|
1764 |
+
"step": 117
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 3.6875,
|
1768 |
+
"grad_norm": 0.44823929530189277,
|
1769 |
+
"learning_rate": 2e-05,
|
1770 |
+
"loss": 0.7751,
|
1771 |
+
"step": 118
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 3.6875,
|
1775 |
+
"eval_loss": 0.7170334458351135,
|
1776 |
+
"eval_runtime": 58.7428,
|
1777 |
+
"eval_samples_per_second": 3.405,
|
1778 |
+
"eval_steps_per_second": 0.426,
|
1779 |
+
"step": 118
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 3.71875,
|
1783 |
+
"grad_norm": 0.4369363559974751,
|
1784 |
+
"learning_rate": 2e-05,
|
1785 |
+
"loss": 0.8321,
|
1786 |
+
"step": 119
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 3.71875,
|
1790 |
+
"eval_loss": 0.7169127464294434,
|
1791 |
+
"eval_runtime": 58.6794,
|
1792 |
+
"eval_samples_per_second": 3.408,
|
1793 |
+
"eval_steps_per_second": 0.426,
|
1794 |
+
"step": 119
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.75,
|
1798 |
+
"grad_norm": 0.43105130939689645,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.7722,
|
1801 |
+
"step": 120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.75,
|
1805 |
+
"eval_loss": 0.7162806987762451,
|
1806 |
+
"eval_runtime": 58.7674,
|
1807 |
+
"eval_samples_per_second": 3.403,
|
1808 |
+
"eval_steps_per_second": 0.425,
|
1809 |
+
"step": 120
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 3.78125,
|
1813 |
+
"grad_norm": 0.43789804607163635,
|
1814 |
+
"learning_rate": 2e-05,
|
1815 |
+
"loss": 0.7548,
|
1816 |
+
"step": 121
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 3.78125,
|
1820 |
+
"eval_loss": 0.7144981622695923,
|
1821 |
+
"eval_runtime": 58.3815,
|
1822 |
+
"eval_samples_per_second": 3.426,
|
1823 |
+
"eval_steps_per_second": 0.428,
|
1824 |
+
"step": 121
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 3.8125,
|
1828 |
+
"grad_norm": 0.46941128815266536,
|
1829 |
+
"learning_rate": 2e-05,
|
1830 |
+
"loss": 0.8189,
|
1831 |
+
"step": 122
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 3.8125,
|
1835 |
+
"eval_loss": 0.712846040725708,
|
1836 |
+
"eval_runtime": 58.5034,
|
1837 |
+
"eval_samples_per_second": 3.419,
|
1838 |
+
"eval_steps_per_second": 0.427,
|
1839 |
+
"step": 122
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 3.84375,
|
1843 |
+
"grad_norm": 0.4415453126320104,
|
1844 |
+
"learning_rate": 2e-05,
|
1845 |
+
"loss": 0.7484,
|
1846 |
+
"step": 123
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 3.84375,
|
1850 |
+
"eval_loss": 0.7111316919326782,
|
1851 |
+
"eval_runtime": 58.566,
|
1852 |
+
"eval_samples_per_second": 3.415,
|
1853 |
+
"eval_steps_per_second": 0.427,
|
1854 |
+
"step": 123
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 3.875,
|
1858 |
+
"grad_norm": 0.4237981688992312,
|
1859 |
+
"learning_rate": 2e-05,
|
1860 |
+
"loss": 0.77,
|
1861 |
+
"step": 124
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 3.875,
|
1865 |
+
"eval_loss": 0.7098332047462463,
|
1866 |
+
"eval_runtime": 58.5232,
|
1867 |
+
"eval_samples_per_second": 3.417,
|
1868 |
+
"eval_steps_per_second": 0.427,
|
1869 |
+
"step": 124
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 3.90625,
|
1873 |
+
"grad_norm": 0.49069037639672286,
|
1874 |
+
"learning_rate": 2e-05,
|
1875 |
+
"loss": 0.8059,
|
1876 |
+
"step": 125
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 3.90625,
|
1880 |
+
"eval_loss": 0.7086107730865479,
|
1881 |
+
"eval_runtime": 59.8651,
|
1882 |
+
"eval_samples_per_second": 3.341,
|
1883 |
+
"eval_steps_per_second": 0.418,
|
1884 |
+
"step": 125
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 3.9375,
|
1888 |
+
"grad_norm": 0.48569295378281013,
|
1889 |
+
"learning_rate": 2e-05,
|
1890 |
+
"loss": 0.7799,
|
1891 |
+
"step": 126
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 3.9375,
|
1895 |
+
"eval_loss": 0.7077484726905823,
|
1896 |
+
"eval_runtime": 58.4449,
|
1897 |
+
"eval_samples_per_second": 3.422,
|
1898 |
+
"eval_steps_per_second": 0.428,
|
1899 |
+
"step": 126
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.96875,
|
1903 |
+
"grad_norm": 0.47224685972430797,
|
1904 |
+
"learning_rate": 2e-05,
|
1905 |
+
"loss": 0.7381,
|
1906 |
+
"step": 127
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.96875,
|
1910 |
+
"eval_loss": 0.7073386907577515,
|
1911 |
+
"eval_runtime": 58.5961,
|
1912 |
+
"eval_samples_per_second": 3.413,
|
1913 |
+
"eval_steps_per_second": 0.427,
|
1914 |
+
"step": 127
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 4.0,
|
1918 |
+
"grad_norm": 0.48833051814427636,
|
1919 |
+
"learning_rate": 2e-05,
|
1920 |
+
"loss": 0.678,
|
1921 |
+
"step": 128
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 4.0,
|
1925 |
+
"eval_loss": 0.706765353679657,
|
1926 |
+
"eval_runtime": 60.6877,
|
1927 |
+
"eval_samples_per_second": 3.296,
|
1928 |
+
"eval_steps_per_second": 0.412,
|
1929 |
+
"step": 128
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 4.03125,
|
1933 |
+
"grad_norm": 0.4116173650136014,
|
1934 |
+
"learning_rate": 2e-05,
|
1935 |
+
"loss": 0.7582,
|
1936 |
+
"step": 129
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 4.03125,
|
1940 |
+
"eval_loss": 0.7067686319351196,
|
1941 |
+
"eval_runtime": 58.4349,
|
1942 |
+
"eval_samples_per_second": 3.423,
|
1943 |
+
"eval_steps_per_second": 0.428,
|
1944 |
+
"step": 129
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 4.0625,
|
1948 |
+
"grad_norm": 0.46176556383782513,
|
1949 |
+
"learning_rate": 2e-05,
|
1950 |
+
"loss": 0.7749,
|
1951 |
+
"step": 130
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 4.0625,
|
1955 |
+
"eval_loss": 0.7066690325737,
|
1956 |
+
"eval_runtime": 58.7029,
|
1957 |
+
"eval_samples_per_second": 3.407,
|
1958 |
+
"eval_steps_per_second": 0.426,
|
1959 |
+
"step": 130
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 4.09375,
|
1963 |
+
"grad_norm": 0.4454696779432102,
|
1964 |
+
"learning_rate": 2e-05,
|
1965 |
+
"loss": 0.773,
|
1966 |
+
"step": 131
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 4.09375,
|
1970 |
+
"eval_loss": 0.7064326405525208,
|
1971 |
+
"eval_runtime": 61.252,
|
1972 |
+
"eval_samples_per_second": 3.265,
|
1973 |
+
"eval_steps_per_second": 0.408,
|
1974 |
+
"step": 131
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 4.125,
|
1978 |
+
"grad_norm": 0.5015422163334902,
|
1979 |
+
"learning_rate": 2e-05,
|
1980 |
+
"loss": 0.7369,
|
1981 |
+
"step": 132
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 4.125,
|
1985 |
+
"eval_loss": 0.7057382464408875,
|
1986 |
+
"eval_runtime": 59.411,
|
1987 |
+
"eval_samples_per_second": 3.366,
|
1988 |
+
"eval_steps_per_second": 0.421,
|
1989 |
+
"step": 132
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 4.15625,
|
1993 |
+
"grad_norm": 0.472373878055723,
|
1994 |
+
"learning_rate": 2e-05,
|
1995 |
+
"loss": 0.8262,
|
1996 |
+
"step": 133
|
1997 |
+
},
|
1998 |
+
{
|
1999 |
+
"epoch": 4.15625,
|
2000 |
+
"eval_loss": 0.7050846815109253,
|
2001 |
+
"eval_runtime": 59.2996,
|
2002 |
+
"eval_samples_per_second": 3.373,
|
2003 |
+
"eval_steps_per_second": 0.422,
|
2004 |
+
"step": 133
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 4.1875,
|
2008 |
+
"grad_norm": 0.5384950553698907,
|
2009 |
+
"learning_rate": 2e-05,
|
2010 |
+
"loss": 0.74,
|
2011 |
+
"step": 134
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 4.1875,
|
2015 |
+
"eval_loss": 0.7045766711235046,
|
2016 |
+
"eval_runtime": 59.2928,
|
2017 |
+
"eval_samples_per_second": 3.373,
|
2018 |
+
"eval_steps_per_second": 0.422,
|
2019 |
+
"step": 134
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 4.21875,
|
2023 |
+
"grad_norm": 0.4692662892631433,
|
2024 |
+
"learning_rate": 2e-05,
|
2025 |
+
"loss": 0.7443,
|
2026 |
+
"step": 135
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 4.21875,
|
2030 |
+
"eval_loss": 0.7045109272003174,
|
2031 |
+
"eval_runtime": 59.525,
|
2032 |
+
"eval_samples_per_second": 3.36,
|
2033 |
+
"eval_steps_per_second": 0.42,
|
2034 |
+
"step": 135
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 4.25,
|
2038 |
+
"grad_norm": 0.49707639799158876,
|
2039 |
+
"learning_rate": 2e-05,
|
2040 |
+
"loss": 0.733,
|
2041 |
+
"step": 136
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 4.25,
|
2045 |
+
"eval_loss": 0.7047656178474426,
|
2046 |
+
"eval_runtime": 60.1718,
|
2047 |
+
"eval_samples_per_second": 3.324,
|
2048 |
+
"eval_steps_per_second": 0.415,
|
2049 |
+
"step": 136
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 4.28125,
|
2053 |
+
"grad_norm": 0.5042999858449994,
|
2054 |
+
"learning_rate": 2e-05,
|
2055 |
+
"loss": 0.7303,
|
2056 |
+
"step": 137
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 4.28125,
|
2060 |
+
"eval_loss": 0.7046284675598145,
|
2061 |
+
"eval_runtime": 60.01,
|
2062 |
+
"eval_samples_per_second": 3.333,
|
2063 |
+
"eval_steps_per_second": 0.417,
|
2064 |
+
"step": 137
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 4.3125,
|
2068 |
+
"grad_norm": 0.5236583357740581,
|
2069 |
+
"learning_rate": 2e-05,
|
2070 |
+
"loss": 0.7254,
|
2071 |
+
"step": 138
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 4.3125,
|
2075 |
+
"eval_loss": 0.7038366794586182,
|
2076 |
+
"eval_runtime": 60.3496,
|
2077 |
+
"eval_samples_per_second": 3.314,
|
2078 |
+
"eval_steps_per_second": 0.414,
|
2079 |
+
"step": 138
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 4.34375,
|
2083 |
+
"grad_norm": 0.5197559530441114,
|
2084 |
+
"learning_rate": 2e-05,
|
2085 |
+
"loss": 0.6956,
|
2086 |
+
"step": 139
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 4.34375,
|
2090 |
+
"eval_loss": 0.7023048400878906,
|
2091 |
+
"eval_runtime": 60.3808,
|
2092 |
+
"eval_samples_per_second": 3.312,
|
2093 |
+
"eval_steps_per_second": 0.414,
|
2094 |
+
"step": 139
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 4.375,
|
2098 |
+
"grad_norm": 0.5214546280852583,
|
2099 |
+
"learning_rate": 2e-05,
|
2100 |
+
"loss": 0.7243,
|
2101 |
+
"step": 140
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 4.375,
|
2105 |
+
"eval_loss": 0.7011681199073792,
|
2106 |
+
"eval_runtime": 60.1368,
|
2107 |
+
"eval_samples_per_second": 3.326,
|
2108 |
+
"eval_steps_per_second": 0.416,
|
2109 |
+
"step": 140
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 4.40625,
|
2113 |
+
"grad_norm": 0.47638616269940814,
|
2114 |
+
"learning_rate": 2e-05,
|
2115 |
+
"loss": 0.7442,
|
2116 |
+
"step": 141
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 4.40625,
|
2120 |
+
"eval_loss": 0.7005561590194702,
|
2121 |
+
"eval_runtime": 61.003,
|
2122 |
+
"eval_samples_per_second": 3.279,
|
2123 |
+
"eval_steps_per_second": 0.41,
|
2124 |
+
"step": 141
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 4.4375,
|
2128 |
+
"grad_norm": 0.5067672241908349,
|
2129 |
+
"learning_rate": 2e-05,
|
2130 |
+
"loss": 0.693,
|
2131 |
+
"step": 142
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 4.4375,
|
2135 |
+
"eval_loss": 0.7004985809326172,
|
2136 |
+
"eval_runtime": 60.1646,
|
2137 |
+
"eval_samples_per_second": 3.324,
|
2138 |
+
"eval_steps_per_second": 0.416,
|
2139 |
+
"step": 142
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 4.46875,
|
2143 |
+
"grad_norm": 0.5323088696033406,
|
2144 |
+
"learning_rate": 2e-05,
|
2145 |
+
"loss": 0.7019,
|
2146 |
+
"step": 143
|
2147 |
+
},
|
2148 |
+
{
|
2149 |
+
"epoch": 4.46875,
|
2150 |
+
"eval_loss": 0.7001196146011353,
|
2151 |
+
"eval_runtime": 59.9527,
|
2152 |
+
"eval_samples_per_second": 3.336,
|
2153 |
+
"eval_steps_per_second": 0.417,
|
2154 |
+
"step": 143
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 4.5,
|
2158 |
+
"grad_norm": 0.4994538125400832,
|
2159 |
+
"learning_rate": 2e-05,
|
2160 |
+
"loss": 0.684,
|
2161 |
+
"step": 144
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 4.5,
|
2165 |
+
"eval_loss": 0.6989223957061768,
|
2166 |
+
"eval_runtime": 59.7753,
|
2167 |
+
"eval_samples_per_second": 3.346,
|
2168 |
+
"eval_steps_per_second": 0.418,
|
2169 |
+
"step": 144
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 4.53125,
|
2173 |
+
"grad_norm": 0.5328972466603664,
|
2174 |
+
"learning_rate": 2e-05,
|
2175 |
+
"loss": 0.7581,
|
2176 |
+
"step": 145
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 4.53125,
|
2180 |
+
"eval_loss": 0.697172999382019,
|
2181 |
+
"eval_runtime": 59.678,
|
2182 |
+
"eval_samples_per_second": 3.351,
|
2183 |
+
"eval_steps_per_second": 0.419,
|
2184 |
+
"step": 145
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 4.5625,
|
2188 |
+
"grad_norm": 0.557725244530984,
|
2189 |
+
"learning_rate": 2e-05,
|
2190 |
+
"loss": 0.6562,
|
2191 |
+
"step": 146
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 4.5625,
|
2195 |
+
"eval_loss": 0.6954514980316162,
|
2196 |
+
"eval_runtime": 59.6753,
|
2197 |
+
"eval_samples_per_second": 3.351,
|
2198 |
+
"eval_steps_per_second": 0.419,
|
2199 |
+
"step": 146
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 4.59375,
|
2203 |
+
"grad_norm": 0.520999668899182,
|
2204 |
+
"learning_rate": 2e-05,
|
2205 |
+
"loss": 0.7108,
|
2206 |
+
"step": 147
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 4.59375,
|
2210 |
+
"eval_loss": 0.6949453949928284,
|
2211 |
+
"eval_runtime": 59.7891,
|
2212 |
+
"eval_samples_per_second": 3.345,
|
2213 |
+
"eval_steps_per_second": 0.418,
|
2214 |
+
"step": 147
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 4.625,
|
2218 |
+
"grad_norm": 0.513677589761833,
|
2219 |
+
"learning_rate": 2e-05,
|
2220 |
+
"loss": 0.6697,
|
2221 |
+
"step": 148
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 4.625,
|
2225 |
+
"eval_loss": 0.6953239440917969,
|
2226 |
+
"eval_runtime": 59.7415,
|
2227 |
+
"eval_samples_per_second": 3.348,
|
2228 |
+
"eval_steps_per_second": 0.418,
|
2229 |
+
"step": 148
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 4.65625,
|
2233 |
+
"grad_norm": 0.5054488117701784,
|
2234 |
+
"learning_rate": 2e-05,
|
2235 |
+
"loss": 0.7793,
|
2236 |
+
"step": 149
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 4.65625,
|
2240 |
+
"eval_loss": 0.6959659457206726,
|
2241 |
+
"eval_runtime": 59.9711,
|
2242 |
+
"eval_samples_per_second": 3.335,
|
2243 |
+
"eval_steps_per_second": 0.417,
|
2244 |
+
"step": 149
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 4.6875,
|
2248 |
+
"grad_norm": 0.5962123257952582,
|
2249 |
+
"learning_rate": 2e-05,
|
2250 |
+
"loss": 0.7068,
|
2251 |
+
"step": 150
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 4.6875,
|
2255 |
+
"eval_loss": 0.6952192783355713,
|
2256 |
+
"eval_runtime": 59.6824,
|
2257 |
+
"eval_samples_per_second": 3.351,
|
2258 |
+
"eval_steps_per_second": 0.419,
|
2259 |
+
"step": 150
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 4.71875,
|
2263 |
+
"grad_norm": 0.6009619303481951,
|
2264 |
+
"learning_rate": 2e-05,
|
2265 |
+
"loss": 0.7261,
|
2266 |
+
"step": 151
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 4.71875,
|
2270 |
+
"eval_loss": 0.6935360431671143,
|
2271 |
+
"eval_runtime": 59.5352,
|
2272 |
+
"eval_samples_per_second": 3.359,
|
2273 |
+
"eval_steps_per_second": 0.42,
|
2274 |
+
"step": 151
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 4.75,
|
2278 |
+
"grad_norm": 0.5670117266130251,
|
2279 |
+
"learning_rate": 2e-05,
|
2280 |
+
"loss": 0.744,
|
2281 |
+
"step": 152
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 4.75,
|
2285 |
+
"eval_loss": 0.6924968957901001,
|
2286 |
+
"eval_runtime": 61.2965,
|
2287 |
+
"eval_samples_per_second": 3.263,
|
2288 |
+
"eval_steps_per_second": 0.408,
|
2289 |
+
"step": 152
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 4.78125,
|
2293 |
+
"grad_norm": 0.5564998515626721,
|
2294 |
+
"learning_rate": 2e-05,
|
2295 |
+
"loss": 0.6982,
|
2296 |
+
"step": 153
|
2297 |
+
},
|
2298 |
+
{
|
2299 |
+
"epoch": 4.78125,
|
2300 |
+
"eval_loss": 0.6924961805343628,
|
2301 |
+
"eval_runtime": 61.2731,
|
2302 |
+
"eval_samples_per_second": 3.264,
|
2303 |
+
"eval_steps_per_second": 0.408,
|
2304 |
+
"step": 153
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 4.8125,
|
2308 |
+
"grad_norm": 0.528752035989291,
|
2309 |
+
"learning_rate": 2e-05,
|
2310 |
+
"loss": 0.7109,
|
2311 |
+
"step": 154
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 4.8125,
|
2315 |
+
"eval_loss": 0.6933311223983765,
|
2316 |
+
"eval_runtime": 59.8859,
|
2317 |
+
"eval_samples_per_second": 3.34,
|
2318 |
+
"eval_steps_per_second": 0.417,
|
2319 |
+
"step": 154
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 4.84375,
|
2323 |
+
"grad_norm": 0.5868388300709311,
|
2324 |
+
"learning_rate": 2e-05,
|
2325 |
+
"loss": 0.6592,
|
2326 |
+
"step": 155
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 4.84375,
|
2330 |
+
"eval_loss": 0.6933980584144592,
|
2331 |
+
"eval_runtime": 59.9915,
|
2332 |
+
"eval_samples_per_second": 3.334,
|
2333 |
+
"eval_steps_per_second": 0.417,
|
2334 |
+
"step": 155
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 4.875,
|
2338 |
+
"grad_norm": 0.5602090329210427,
|
2339 |
+
"learning_rate": 2e-05,
|
2340 |
+
"loss": 0.7682,
|
2341 |
+
"step": 156
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 4.875,
|
2345 |
+
"eval_loss": 0.6923888921737671,
|
2346 |
+
"eval_runtime": 61.499,
|
2347 |
+
"eval_samples_per_second": 3.252,
|
2348 |
+
"eval_steps_per_second": 0.407,
|
2349 |
+
"step": 156
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 4.90625,
|
2353 |
+
"grad_norm": 0.5051330890531748,
|
2354 |
+
"learning_rate": 2e-05,
|
2355 |
+
"loss": 0.7491,
|
2356 |
+
"step": 157
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 4.90625,
|
2360 |
+
"eval_loss": 0.69191575050354,
|
2361 |
+
"eval_runtime": 59.6969,
|
2362 |
+
"eval_samples_per_second": 3.35,
|
2363 |
+
"eval_steps_per_second": 0.419,
|
2364 |
+
"step": 157
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 4.9375,
|
2368 |
+
"grad_norm": 0.5377224007409029,
|
2369 |
+
"learning_rate": 2e-05,
|
2370 |
+
"loss": 0.7501,
|
2371 |
+
"step": 158
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 4.9375,
|
2375 |
+
"eval_loss": 0.69122314453125,
|
2376 |
+
"eval_runtime": 60.1345,
|
2377 |
+
"eval_samples_per_second": 3.326,
|
2378 |
+
"eval_steps_per_second": 0.416,
|
2379 |
+
"step": 158
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 4.96875,
|
2383 |
+
"grad_norm": 0.544576473903093,
|
2384 |
+
"learning_rate": 2e-05,
|
2385 |
+
"loss": 0.714,
|
2386 |
+
"step": 159
|
2387 |
+
},
|
2388 |
+
{
|
2389 |
+
"epoch": 4.96875,
|
2390 |
+
"eval_loss": 0.6905286908149719,
|
2391 |
+
"eval_runtime": 59.9667,
|
2392 |
+
"eval_samples_per_second": 3.335,
|
2393 |
+
"eval_steps_per_second": 0.417,
|
2394 |
+
"step": 159
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 5.0,
|
2398 |
+
"grad_norm": 0.5027197538560159,
|
2399 |
+
"learning_rate": 2e-05,
|
2400 |
+
"loss": 0.7181,
|
2401 |
+
"step": 160
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 5.0,
|
2405 |
+
"eval_loss": 0.6906802654266357,
|
2406 |
+
"eval_runtime": 60.0766,
|
2407 |
+
"eval_samples_per_second": 3.329,
|
2408 |
+
"eval_steps_per_second": 0.416,
|
2409 |
+
"step": 160
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 5.03125,
|
2413 |
+
"grad_norm": 0.5041535532115543,
|
2414 |
+
"learning_rate": 2e-05,
|
2415 |
+
"loss": 0.6636,
|
2416 |
+
"step": 161
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 5.03125,
|
2420 |
+
"eval_loss": 0.6912646293640137,
|
2421 |
+
"eval_runtime": 63.5855,
|
2422 |
+
"eval_samples_per_second": 3.145,
|
2423 |
+
"eval_steps_per_second": 0.393,
|
2424 |
+
"step": 161
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 5.0625,
|
2428 |
+
"grad_norm": 0.5286650599348627,
|
2429 |
+
"learning_rate": 2e-05,
|
2430 |
+
"loss": 0.8107,
|
2431 |
+
"step": 162
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 5.0625,
|
2435 |
+
"eval_loss": 0.6922540068626404,
|
2436 |
+
"eval_runtime": 56.5364,
|
2437 |
+
"eval_samples_per_second": 3.538,
|
2438 |
+
"eval_steps_per_second": 0.442,
|
2439 |
+
"step": 162
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 5.09375,
|
2443 |
+
"grad_norm": 0.588785168960039,
|
2444 |
+
"learning_rate": 2e-05,
|
2445 |
+
"loss": 0.6169,
|
2446 |
+
"step": 163
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 5.09375,
|
2450 |
+
"eval_loss": 0.692643404006958,
|
2451 |
+
"eval_runtime": 56.5005,
|
2452 |
+
"eval_samples_per_second": 3.54,
|
2453 |
+
"eval_steps_per_second": 0.442,
|
2454 |
+
"step": 163
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 5.125,
|
2458 |
+
"grad_norm": 0.5752677936578872,
|
2459 |
+
"learning_rate": 2e-05,
|
2460 |
+
"loss": 0.7473,
|
2461 |
+
"step": 164
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 5.125,
|
2465 |
+
"eval_loss": 0.6927568912506104,
|
2466 |
+
"eval_runtime": 58.5386,
|
2467 |
+
"eval_samples_per_second": 3.417,
|
2468 |
+
"eval_steps_per_second": 0.427,
|
2469 |
+
"step": 164
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 5.15625,
|
2473 |
+
"grad_norm": 0.6487162117437294,
|
2474 |
+
"learning_rate": 2e-05,
|
2475 |
+
"loss": 0.588,
|
2476 |
+
"step": 165
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 5.15625,
|
2480 |
+
"eval_loss": 0.692574143409729,
|
2481 |
+
"eval_runtime": 56.4611,
|
2482 |
+
"eval_samples_per_second": 3.542,
|
2483 |
+
"eval_steps_per_second": 0.443,
|
2484 |
+
"step": 165
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 5.1875,
|
2488 |
+
"grad_norm": 0.6353608377871973,
|
2489 |
+
"learning_rate": 2e-05,
|
2490 |
+
"loss": 0.6933,
|
2491 |
+
"step": 166
|
2492 |
+
},
|
2493 |
+
{
|
2494 |
+
"epoch": 5.1875,
|
2495 |
+
"eval_loss": 0.6932590007781982,
|
2496 |
+
"eval_runtime": 56.5989,
|
2497 |
+
"eval_samples_per_second": 3.534,
|
2498 |
+
"eval_steps_per_second": 0.442,
|
2499 |
+
"step": 166
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 5.21875,
|
2503 |
+
"grad_norm": 0.5450036592535661,
|
2504 |
+
"learning_rate": 2e-05,
|
2505 |
+
"loss": 0.7175,
|
2506 |
+
"step": 167
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 5.21875,
|
2510 |
+
"eval_loss": 0.6944625973701477,
|
2511 |
+
"eval_runtime": 56.5362,
|
2512 |
+
"eval_samples_per_second": 3.538,
|
2513 |
+
"eval_steps_per_second": 0.442,
|
2514 |
+
"step": 167
|
2515 |
+
},
|
2516 |
+
{
|
2517 |
+
"epoch": 5.25,
|
2518 |
+
"grad_norm": 0.6095734786538398,
|
2519 |
+
"learning_rate": 2e-05,
|
2520 |
+
"loss": 0.7478,
|
2521 |
+
"step": 168
|
2522 |
+
},
|
2523 |
+
{
|
2524 |
+
"epoch": 5.25,
|
2525 |
+
"eval_loss": 0.695120632648468,
|
2526 |
+
"eval_runtime": 56.465,
|
2527 |
+
"eval_samples_per_second": 3.542,
|
2528 |
+
"eval_steps_per_second": 0.443,
|
2529 |
+
"step": 168
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 5.28125,
|
2533 |
+
"grad_norm": 0.5879704367364821,
|
2534 |
+
"learning_rate": 2e-05,
|
2535 |
+
"loss": 0.674,
|
2536 |
+
"step": 169
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 5.28125,
|
2540 |
+
"eval_loss": 0.6956540942192078,
|
2541 |
+
"eval_runtime": 56.6007,
|
2542 |
+
"eval_samples_per_second": 3.534,
|
2543 |
+
"eval_steps_per_second": 0.442,
|
2544 |
+
"step": 169
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 5.3125,
|
2548 |
+
"grad_norm": 0.6595426789183463,
|
2549 |
+
"learning_rate": 2e-05,
|
2550 |
+
"loss": 0.6536,
|
2551 |
+
"step": 170
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 5.3125,
|
2555 |
+
"eval_loss": 0.6957553029060364,
|
2556 |
+
"eval_runtime": 56.4722,
|
2557 |
+
"eval_samples_per_second": 3.542,
|
2558 |
+
"eval_steps_per_second": 0.443,
|
2559 |
+
"step": 170
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 5.34375,
|
2563 |
+
"grad_norm": 0.7708120772721636,
|
2564 |
+
"learning_rate": 2e-05,
|
2565 |
+
"loss": 0.666,
|
2566 |
+
"step": 171
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 5.34375,
|
2570 |
+
"eval_loss": 0.693030834197998,
|
2571 |
+
"eval_runtime": 56.3518,
|
2572 |
+
"eval_samples_per_second": 3.549,
|
2573 |
+
"eval_steps_per_second": 0.444,
|
2574 |
+
"step": 171
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 5.375,
|
2578 |
+
"grad_norm": 0.666091377671071,
|
2579 |
+
"learning_rate": 2e-05,
|
2580 |
+
"loss": 0.7422,
|
2581 |
+
"step": 172
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 5.375,
|
2585 |
+
"eval_loss": 0.6900334358215332,
|
2586 |
+
"eval_runtime": 56.5395,
|
2587 |
+
"eval_samples_per_second": 3.537,
|
2588 |
+
"eval_steps_per_second": 0.442,
|
2589 |
+
"step": 172
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 5.40625,
|
2593 |
+
"grad_norm": 0.6203365868953359,
|
2594 |
+
"learning_rate": 2e-05,
|
2595 |
+
"loss": 0.7069,
|
2596 |
+
"step": 173
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"epoch": 5.40625,
|
2600 |
+
"eval_loss": 0.6880744099617004,
|
2601 |
+
"eval_runtime": 56.4675,
|
2602 |
+
"eval_samples_per_second": 3.542,
|
2603 |
+
"eval_steps_per_second": 0.443,
|
2604 |
+
"step": 173
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"epoch": 5.4375,
|
2608 |
+
"grad_norm": 0.6299525495855296,
|
2609 |
+
"learning_rate": 2e-05,
|
2610 |
+
"loss": 0.7422,
|
2611 |
+
"step": 174
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 5.4375,
|
2615 |
+
"eval_loss": 0.686725378036499,
|
2616 |
+
"eval_runtime": 56.671,
|
2617 |
+
"eval_samples_per_second": 3.529,
|
2618 |
+
"eval_steps_per_second": 0.441,
|
2619 |
+
"step": 174
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 5.46875,
|
2623 |
+
"grad_norm": 0.6415660970283229,
|
2624 |
+
"learning_rate": 2e-05,
|
2625 |
+
"loss": 0.7347,
|
2626 |
+
"step": 175
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 5.46875,
|
2630 |
+
"eval_loss": 0.6870352029800415,
|
2631 |
+
"eval_runtime": 56.5976,
|
2632 |
+
"eval_samples_per_second": 3.534,
|
2633 |
+
"eval_steps_per_second": 0.442,
|
2634 |
+
"step": 175
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 5.5,
|
2638 |
+
"grad_norm": 0.6569935128967318,
|
2639 |
+
"learning_rate": 2e-05,
|
2640 |
+
"loss": 0.6773,
|
2641 |
+
"step": 176
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 5.5,
|
2645 |
+
"eval_loss": 0.6870338320732117,
|
2646 |
+
"eval_runtime": 57.2325,
|
2647 |
+
"eval_samples_per_second": 3.495,
|
2648 |
+
"eval_steps_per_second": 0.437,
|
2649 |
+
"step": 176
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 5.53125,
|
2653 |
+
"grad_norm": 0.6895239904364278,
|
2654 |
+
"learning_rate": 2e-05,
|
2655 |
+
"loss": 0.7106,
|
2656 |
+
"step": 177
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 5.53125,
|
2660 |
+
"eval_loss": 0.6859387755393982,
|
2661 |
+
"eval_runtime": 57.3075,
|
2662 |
+
"eval_samples_per_second": 3.49,
|
2663 |
+
"eval_steps_per_second": 0.436,
|
2664 |
+
"step": 177
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 5.5625,
|
2668 |
+
"grad_norm": 0.5855839234707383,
|
2669 |
+
"learning_rate": 2e-05,
|
2670 |
+
"loss": 0.7361,
|
2671 |
+
"step": 178
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 5.5625,
|
2675 |
+
"eval_loss": 0.6856819987297058,
|
2676 |
+
"eval_runtime": 57.5973,
|
2677 |
+
"eval_samples_per_second": 3.472,
|
2678 |
+
"eval_steps_per_second": 0.434,
|
2679 |
+
"step": 178
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 5.59375,
|
2683 |
+
"grad_norm": 0.6198072484940144,
|
2684 |
+
"learning_rate": 2e-05,
|
2685 |
+
"loss": 0.6386,
|
2686 |
+
"step": 179
|
2687 |
+
},
|
2688 |
+
{
|
2689 |
+
"epoch": 5.59375,
|
2690 |
+
"eval_loss": 0.6865841746330261,
|
2691 |
+
"eval_runtime": 57.4429,
|
2692 |
+
"eval_samples_per_second": 3.482,
|
2693 |
+
"eval_steps_per_second": 0.435,
|
2694 |
+
"step": 179
|
2695 |
+
},
|
2696 |
+
{
|
2697 |
+
"epoch": 5.625,
|
2698 |
+
"grad_norm": 0.6169444945747248,
|
2699 |
+
"learning_rate": 2e-05,
|
2700 |
+
"loss": 0.6455,
|
2701 |
+
"step": 180
|
2702 |
+
},
|
2703 |
+
{
|
2704 |
+
"epoch": 5.625,
|
2705 |
+
"eval_loss": 0.6871997714042664,
|
2706 |
+
"eval_runtime": 57.3975,
|
2707 |
+
"eval_samples_per_second": 3.484,
|
2708 |
+
"eval_steps_per_second": 0.436,
|
2709 |
+
"step": 180
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 5.65625,
|
2713 |
+
"grad_norm": 0.6524804251939137,
|
2714 |
+
"learning_rate": 2e-05,
|
2715 |
+
"loss": 0.6588,
|
2716 |
+
"step": 181
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 5.65625,
|
2720 |
+
"eval_loss": 0.6873356103897095,
|
2721 |
+
"eval_runtime": 57.4579,
|
2722 |
+
"eval_samples_per_second": 3.481,
|
2723 |
+
"eval_steps_per_second": 0.435,
|
2724 |
+
"step": 181
|
2725 |
+
},
|
2726 |
+
{
|
2727 |
+
"epoch": 5.6875,
|
2728 |
+
"grad_norm": 0.6578787618504525,
|
2729 |
+
"learning_rate": 2e-05,
|
2730 |
+
"loss": 0.6274,
|
2731 |
+
"step": 182
|
2732 |
+
},
|
2733 |
+
{
|
2734 |
+
"epoch": 5.6875,
|
2735 |
+
"eval_loss": 0.6880214214324951,
|
2736 |
+
"eval_runtime": 57.5735,
|
2737 |
+
"eval_samples_per_second": 3.474,
|
2738 |
+
"eval_steps_per_second": 0.434,
|
2739 |
+
"step": 182
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 5.71875,
|
2743 |
+
"grad_norm": 0.732160801451622,
|
2744 |
+
"learning_rate": 2e-05,
|
2745 |
+
"loss": 0.6623,
|
2746 |
+
"step": 183
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 5.71875,
|
2750 |
+
"eval_loss": 0.6879817247390747,
|
2751 |
+
"eval_runtime": 57.5801,
|
2752 |
+
"eval_samples_per_second": 3.473,
|
2753 |
+
"eval_steps_per_second": 0.434,
|
2754 |
+
"step": 183
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 5.75,
|
2758 |
+
"grad_norm": 0.7294753965107613,
|
2759 |
+
"learning_rate": 2e-05,
|
2760 |
+
"loss": 0.6562,
|
2761 |
+
"step": 184
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 5.75,
|
2765 |
+
"eval_loss": 0.6870495676994324,
|
2766 |
+
"eval_runtime": 57.6659,
|
2767 |
+
"eval_samples_per_second": 3.468,
|
2768 |
+
"eval_steps_per_second": 0.434,
|
2769 |
+
"step": 184
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 5.78125,
|
2773 |
+
"grad_norm": 0.6947870304881401,
|
2774 |
+
"learning_rate": 2e-05,
|
2775 |
+
"loss": 0.695,
|
2776 |
+
"step": 185
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 5.78125,
|
2780 |
+
"eval_loss": 0.6856162548065186,
|
2781 |
+
"eval_runtime": 57.4452,
|
2782 |
+
"eval_samples_per_second": 3.482,
|
2783 |
+
"eval_steps_per_second": 0.435,
|
2784 |
+
"step": 185
|
2785 |
+
},
|
2786 |
+
{
|
2787 |
+
"epoch": 5.8125,
|
2788 |
+
"grad_norm": 0.7085011414361884,
|
2789 |
+
"learning_rate": 2e-05,
|
2790 |
+
"loss": 0.6634,
|
2791 |
+
"step": 186
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"epoch": 5.8125,
|
2795 |
+
"eval_loss": 0.6839439272880554,
|
2796 |
+
"eval_runtime": 57.3621,
|
2797 |
+
"eval_samples_per_second": 3.487,
|
2798 |
+
"eval_steps_per_second": 0.436,
|
2799 |
+
"step": 186
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 5.84375,
|
2803 |
+
"grad_norm": 0.6548606152047736,
|
2804 |
+
"learning_rate": 2e-05,
|
2805 |
+
"loss": 0.7117,
|
2806 |
+
"step": 187
|
2807 |
+
},
|
2808 |
+
{
|
2809 |
+
"epoch": 5.84375,
|
2810 |
+
"eval_loss": 0.6837204098701477,
|
2811 |
+
"eval_runtime": 57.3849,
|
2812 |
+
"eval_samples_per_second": 3.485,
|
2813 |
+
"eval_steps_per_second": 0.436,
|
2814 |
+
"step": 187
|
2815 |
+
},
|
2816 |
+
{
|
2817 |
+
"epoch": 5.875,
|
2818 |
+
"grad_norm": 0.6662179186613736,
|
2819 |
+
"learning_rate": 2e-05,
|
2820 |
+
"loss": 0.6528,
|
2821 |
+
"step": 188
|
2822 |
+
},
|
2823 |
+
{
|
2824 |
+
"epoch": 5.875,
|
2825 |
+
"eval_loss": 0.6844826340675354,
|
2826 |
+
"eval_runtime": 57.3173,
|
2827 |
+
"eval_samples_per_second": 3.489,
|
2828 |
+
"eval_steps_per_second": 0.436,
|
2829 |
+
"step": 188
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 5.90625,
|
2833 |
+
"grad_norm": 0.6638311768585444,
|
2834 |
+
"learning_rate": 2e-05,
|
2835 |
+
"loss": 0.6582,
|
2836 |
+
"step": 189
|
2837 |
+
},
|
2838 |
+
{
|
2839 |
+
"epoch": 5.90625,
|
2840 |
+
"eval_loss": 0.6846724152565002,
|
2841 |
+
"eval_runtime": 57.5354,
|
2842 |
+
"eval_samples_per_second": 3.476,
|
2843 |
+
"eval_steps_per_second": 0.435,
|
2844 |
+
"step": 189
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 5.9375,
|
2848 |
+
"grad_norm": 0.7007259768118588,
|
2849 |
+
"learning_rate": 2e-05,
|
2850 |
+
"loss": 0.6742,
|
2851 |
+
"step": 190
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 5.9375,
|
2855 |
+
"eval_loss": 0.6834731101989746,
|
2856 |
+
"eval_runtime": 57.4134,
|
2857 |
+
"eval_samples_per_second": 3.484,
|
2858 |
+
"eval_steps_per_second": 0.435,
|
2859 |
+
"step": 190
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 5.96875,
|
2863 |
+
"grad_norm": 0.6563132346432226,
|
2864 |
+
"learning_rate": 2e-05,
|
2865 |
+
"loss": 0.6752,
|
2866 |
+
"step": 191
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 5.96875,
|
2870 |
+
"eval_loss": 0.6817070245742798,
|
2871 |
+
"eval_runtime": 56.6649,
|
2872 |
+
"eval_samples_per_second": 3.53,
|
2873 |
+
"eval_steps_per_second": 0.441,
|
2874 |
+
"step": 191
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 6.0,
|
2878 |
+
"grad_norm": 0.6349703649303867,
|
2879 |
+
"learning_rate": 2e-05,
|
2880 |
+
"loss": 0.6795,
|
2881 |
+
"step": 192
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 6.0,
|
2885 |
+
"eval_loss": 0.6804311871528625,
|
2886 |
+
"eval_runtime": 56.4378,
|
2887 |
+
"eval_samples_per_second": 3.544,
|
2888 |
+
"eval_steps_per_second": 0.443,
|
2889 |
+
"step": 192
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 6.03125,
|
2893 |
+
"grad_norm": 0.6716039243820887,
|
2894 |
+
"learning_rate": 2e-05,
|
2895 |
+
"loss": 0.7145,
|
2896 |
+
"step": 193
|
2897 |
+
},
|
2898 |
+
{
|
2899 |
+
"epoch": 6.03125,
|
2900 |
+
"eval_loss": 0.6804825067520142,
|
2901 |
+
"eval_runtime": 56.6403,
|
2902 |
+
"eval_samples_per_second": 3.531,
|
2903 |
+
"eval_steps_per_second": 0.441,
|
2904 |
+
"step": 193
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 6.0625,
|
2908 |
+
"grad_norm": 0.5950395984856348,
|
2909 |
+
"learning_rate": 2e-05,
|
2910 |
+
"loss": 0.6768,
|
2911 |
+
"step": 194
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 6.0625,
|
2915 |
+
"eval_loss": 0.6823931932449341,
|
2916 |
+
"eval_runtime": 56.5459,
|
2917 |
+
"eval_samples_per_second": 3.537,
|
2918 |
+
"eval_steps_per_second": 0.442,
|
2919 |
+
"step": 194
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 6.09375,
|
2923 |
+
"grad_norm": 0.6787703014730869,
|
2924 |
+
"learning_rate": 2e-05,
|
2925 |
+
"loss": 0.6158,
|
2926 |
+
"step": 195
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 6.09375,
|
2930 |
+
"eval_loss": 0.6854414939880371,
|
2931 |
+
"eval_runtime": 56.5293,
|
2932 |
+
"eval_samples_per_second": 3.538,
|
2933 |
+
"eval_steps_per_second": 0.442,
|
2934 |
+
"step": 195
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"epoch": 6.125,
|
2938 |
+
"grad_norm": 0.6526684210082853,
|
2939 |
+
"learning_rate": 2e-05,
|
2940 |
+
"loss": 0.6479,
|
2941 |
+
"step": 196
|
2942 |
+
},
|
2943 |
+
{
|
2944 |
+
"epoch": 6.125,
|
2945 |
+
"eval_loss": 0.6892845034599304,
|
2946 |
+
"eval_runtime": 56.5099,
|
2947 |
+
"eval_samples_per_second": 3.539,
|
2948 |
+
"eval_steps_per_second": 0.442,
|
2949 |
+
"step": 196
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 6.15625,
|
2953 |
+
"grad_norm": 0.6997704487164051,
|
2954 |
+
"learning_rate": 2e-05,
|
2955 |
+
"loss": 0.6706,
|
2956 |
+
"step": 197
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 6.15625,
|
2960 |
+
"eval_loss": 0.6941932439804077,
|
2961 |
+
"eval_runtime": 58.514,
|
2962 |
+
"eval_samples_per_second": 3.418,
|
2963 |
+
"eval_steps_per_second": 0.427,
|
2964 |
+
"step": 197
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 6.1875,
|
2968 |
+
"grad_norm": 0.7511370305129338,
|
2969 |
+
"learning_rate": 2e-05,
|
2970 |
+
"loss": 0.7418,
|
2971 |
+
"step": 198
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 6.1875,
|
2975 |
+
"eval_loss": 0.6964046955108643,
|
2976 |
+
"eval_runtime": 58.4428,
|
2977 |
+
"eval_samples_per_second": 3.422,
|
2978 |
+
"eval_steps_per_second": 0.428,
|
2979 |
+
"step": 198
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 6.21875,
|
2983 |
+
"grad_norm": 0.8468482037911412,
|
2984 |
+
"learning_rate": 2e-05,
|
2985 |
+
"loss": 0.618,
|
2986 |
+
"step": 199
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"epoch": 6.21875,
|
2990 |
+
"eval_loss": 0.6947888731956482,
|
2991 |
+
"eval_runtime": 56.6921,
|
2992 |
+
"eval_samples_per_second": 3.528,
|
2993 |
+
"eval_steps_per_second": 0.441,
|
2994 |
+
"step": 199
|
2995 |
+
},
|
2996 |
+
{
|
2997 |
+
"epoch": 6.25,
|
2998 |
+
"grad_norm": 0.80366391754735,
|
2999 |
+
"learning_rate": 2e-05,
|
3000 |
+
"loss": 0.6712,
|
3001 |
+
"step": 200
|
3002 |
+
},
|
3003 |
+
{
|
3004 |
+
"epoch": 6.25,
|
3005 |
+
"eval_loss": 0.691255509853363,
|
3006 |
+
"eval_runtime": 56.7536,
|
3007 |
+
"eval_samples_per_second": 3.524,
|
3008 |
+
"eval_steps_per_second": 0.441,
|
3009 |
+
"step": 200
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 6.28125,
|
3013 |
+
"grad_norm": 0.7123001788838409,
|
3014 |
+
"learning_rate": 2e-05,
|
3015 |
+
"loss": 0.6886,
|
3016 |
+
"step": 201
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 6.28125,
|
3020 |
+
"eval_loss": 0.6888566613197327,
|
3021 |
+
"eval_runtime": 57.4537,
|
3022 |
+
"eval_samples_per_second": 3.481,
|
3023 |
+
"eval_steps_per_second": 0.435,
|
3024 |
+
"step": 201
|
3025 |
+
},
|
3026 |
+
{
|
3027 |
+
"epoch": 6.3125,
|
3028 |
+
"grad_norm": 0.7785807978964993,
|
3029 |
+
"learning_rate": 2e-05,
|
3030 |
+
"loss": 0.6096,
|
3031 |
+
"step": 202
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 6.3125,
|
3035 |
+
"eval_loss": 0.6869829297065735,
|
3036 |
+
"eval_runtime": 57.3967,
|
3037 |
+
"eval_samples_per_second": 3.485,
|
3038 |
+
"eval_steps_per_second": 0.436,
|
3039 |
+
"step": 202
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 6.34375,
|
3043 |
+
"grad_norm": 0.6771659776183533,
|
3044 |
+
"learning_rate": 2e-05,
|
3045 |
+
"loss": 0.7328,
|
3046 |
+
"step": 203
|
3047 |
+
},
|
3048 |
+
{
|
3049 |
+
"epoch": 6.34375,
|
3050 |
+
"eval_loss": 0.6867367625236511,
|
3051 |
+
"eval_runtime": 57.5277,
|
3052 |
+
"eval_samples_per_second": 3.477,
|
3053 |
+
"eval_steps_per_second": 0.435,
|
3054 |
+
"step": 203
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 6.375,
|
3058 |
+
"grad_norm": 0.8106446356590065,
|
3059 |
+
"learning_rate": 2e-05,
|
3060 |
+
"loss": 0.5931,
|
3061 |
+
"step": 204
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 6.375,
|
3065 |
+
"eval_loss": 0.6862130165100098,
|
3066 |
+
"eval_runtime": 57.4868,
|
3067 |
+
"eval_samples_per_second": 3.479,
|
3068 |
+
"eval_steps_per_second": 0.435,
|
3069 |
+
"step": 204
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 6.40625,
|
3073 |
+
"grad_norm": 0.6600674902481064,
|
3074 |
+
"learning_rate": 2e-05,
|
3075 |
+
"loss": 0.5789,
|
3076 |
+
"step": 205
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 6.40625,
|
3080 |
+
"eval_loss": 0.6866827607154846,
|
3081 |
+
"eval_runtime": 57.4287,
|
3082 |
+
"eval_samples_per_second": 3.483,
|
3083 |
+
"eval_steps_per_second": 0.435,
|
3084 |
+
"step": 205
|
3085 |
+
},
|
3086 |
+
{
|
3087 |
+
"epoch": 6.4375,
|
3088 |
+
"grad_norm": 0.8177118767015663,
|
3089 |
+
"learning_rate": 2e-05,
|
3090 |
+
"loss": 0.6395,
|
3091 |
+
"step": 206
|
3092 |
+
},
|
3093 |
+
{
|
3094 |
+
"epoch": 6.4375,
|
3095 |
+
"eval_loss": 0.6866394281387329,
|
3096 |
+
"eval_runtime": 57.0918,
|
3097 |
+
"eval_samples_per_second": 3.503,
|
3098 |
+
"eval_steps_per_second": 0.438,
|
3099 |
+
"step": 206
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 6.46875,
|
3103 |
+
"grad_norm": 0.7284237801181533,
|
3104 |
+
"learning_rate": 2e-05,
|
3105 |
+
"loss": 0.6835,
|
3106 |
+
"step": 207
|
3107 |
+
},
|
3108 |
+
{
|
3109 |
+
"epoch": 6.46875,
|
3110 |
+
"eval_loss": 0.6864017248153687,
|
3111 |
+
"eval_runtime": 57.1565,
|
3112 |
+
"eval_samples_per_second": 3.499,
|
3113 |
+
"eval_steps_per_second": 0.437,
|
3114 |
+
"step": 207
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 6.5,
|
3118 |
+
"grad_norm": 0.7603002790103086,
|
3119 |
+
"learning_rate": 2e-05,
|
3120 |
+
"loss": 0.6347,
|
3121 |
+
"step": 208
|
3122 |
+
},
|
3123 |
+
{
|
3124 |
+
"epoch": 6.5,
|
3125 |
+
"eval_loss": 0.6871703267097473,
|
3126 |
+
"eval_runtime": 57.4181,
|
3127 |
+
"eval_samples_per_second": 3.483,
|
3128 |
+
"eval_steps_per_second": 0.435,
|
3129 |
+
"step": 208
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 6.53125,
|
3133 |
+
"grad_norm": 0.8359766442946917,
|
3134 |
+
"learning_rate": 2e-05,
|
3135 |
+
"loss": 0.6088,
|
3136 |
+
"step": 209
|
3137 |
+
},
|
3138 |
+
{
|
3139 |
+
"epoch": 6.53125,
|
3140 |
+
"eval_loss": 0.6878347992897034,
|
3141 |
+
"eval_runtime": 57.4837,
|
3142 |
+
"eval_samples_per_second": 3.479,
|
3143 |
+
"eval_steps_per_second": 0.435,
|
3144 |
+
"step": 209
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 6.5625,
|
3148 |
+
"grad_norm": 0.7778968951616311,
|
3149 |
+
"learning_rate": 2e-05,
|
3150 |
+
"loss": 0.5912,
|
3151 |
+
"step": 210
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 6.5625,
|
3155 |
+
"eval_loss": 0.6893374919891357,
|
3156 |
+
"eval_runtime": 57.6159,
|
3157 |
+
"eval_samples_per_second": 3.471,
|
3158 |
+
"eval_steps_per_second": 0.434,
|
3159 |
+
"step": 210
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 6.59375,
|
3163 |
+
"grad_norm": 0.8300437291816744,
|
3164 |
+
"learning_rate": 2e-05,
|
3165 |
+
"loss": 0.6299,
|
3166 |
+
"step": 211
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 6.59375,
|
3170 |
+
"eval_loss": 0.6899804472923279,
|
3171 |
+
"eval_runtime": 57.1491,
|
3172 |
+
"eval_samples_per_second": 3.5,
|
3173 |
+
"eval_steps_per_second": 0.437,
|
3174 |
+
"step": 211
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 6.625,
|
3178 |
+
"grad_norm": 0.7994430152763061,
|
3179 |
+
"learning_rate": 2e-05,
|
3180 |
+
"loss": 0.6073,
|
3181 |
+
"step": 212
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 6.625,
|
3185 |
+
"eval_loss": 0.6889459490776062,
|
3186 |
+
"eval_runtime": 57.3773,
|
3187 |
+
"eval_samples_per_second": 3.486,
|
3188 |
+
"eval_steps_per_second": 0.436,
|
3189 |
+
"step": 212
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 6.65625,
|
3193 |
+
"grad_norm": 0.7475670453371858,
|
3194 |
+
"learning_rate": 2e-05,
|
3195 |
+
"loss": 0.6774,
|
3196 |
+
"step": 213
|
3197 |
+
},
|
3198 |
+
{
|
3199 |
+
"epoch": 6.65625,
|
3200 |
+
"eval_loss": 0.6873544454574585,
|
3201 |
+
"eval_runtime": 57.4114,
|
3202 |
+
"eval_samples_per_second": 3.484,
|
3203 |
+
"eval_steps_per_second": 0.435,
|
3204 |
+
"step": 213
|
3205 |
+
},
|
3206 |
+
{
|
3207 |
+
"epoch": 6.6875,
|
3208 |
+
"grad_norm": 0.7281375343651885,
|
3209 |
+
"learning_rate": 2e-05,
|
3210 |
+
"loss": 0.6404,
|
3211 |
+
"step": 214
|
3212 |
+
},
|
3213 |
+
{
|
3214 |
+
"epoch": 6.6875,
|
3215 |
+
"eval_loss": 0.6867469549179077,
|
3216 |
+
"eval_runtime": 57.2899,
|
3217 |
+
"eval_samples_per_second": 3.491,
|
3218 |
+
"eval_steps_per_second": 0.436,
|
3219 |
+
"step": 214
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 6.71875,
|
3223 |
+
"grad_norm": 0.7684115091080507,
|
3224 |
+
"learning_rate": 2e-05,
|
3225 |
+
"loss": 0.6382,
|
3226 |
+
"step": 215
|
3227 |
+
},
|
3228 |
+
{
|
3229 |
+
"epoch": 6.71875,
|
3230 |
+
"eval_loss": 0.6860084533691406,
|
3231 |
+
"eval_runtime": 57.38,
|
3232 |
+
"eval_samples_per_second": 3.486,
|
3233 |
+
"eval_steps_per_second": 0.436,
|
3234 |
+
"step": 215
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 6.75,
|
3238 |
+
"grad_norm": 0.7962356695445627,
|
3239 |
+
"learning_rate": 2e-05,
|
3240 |
+
"loss": 0.6398,
|
3241 |
+
"step": 216
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 6.75,
|
3245 |
+
"eval_loss": 0.6856002807617188,
|
3246 |
+
"eval_runtime": 57.2399,
|
3247 |
+
"eval_samples_per_second": 3.494,
|
3248 |
+
"eval_steps_per_second": 0.437,
|
3249 |
+
"step": 216
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 6.78125,
|
3253 |
+
"grad_norm": 0.7893826807634562,
|
3254 |
+
"learning_rate": 2e-05,
|
3255 |
+
"loss": 0.59,
|
3256 |
+
"step": 217
|
3257 |
+
},
|
3258 |
+
{
|
3259 |
+
"epoch": 6.78125,
|
3260 |
+
"eval_loss": 0.6870043873786926,
|
3261 |
+
"eval_runtime": 57.1671,
|
3262 |
+
"eval_samples_per_second": 3.499,
|
3263 |
+
"eval_steps_per_second": 0.437,
|
3264 |
+
"step": 217
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 6.8125,
|
3268 |
+
"grad_norm": 0.8329644141570051,
|
3269 |
+
"learning_rate": 2e-05,
|
3270 |
+
"loss": 0.5932,
|
3271 |
+
"step": 218
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 6.8125,
|
3275 |
+
"eval_loss": 0.6870229840278625,
|
3276 |
+
"eval_runtime": 57.3642,
|
3277 |
+
"eval_samples_per_second": 3.486,
|
3278 |
+
"eval_steps_per_second": 0.436,
|
3279 |
+
"step": 218
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 6.84375,
|
3283 |
+
"grad_norm": 0.9075127715796286,
|
3284 |
+
"learning_rate": 2e-05,
|
3285 |
+
"loss": 0.669,
|
3286 |
+
"step": 219
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 6.84375,
|
3290 |
+
"eval_loss": 0.6856889128684998,
|
3291 |
+
"eval_runtime": 57.4226,
|
3292 |
+
"eval_samples_per_second": 3.483,
|
3293 |
+
"eval_steps_per_second": 0.435,
|
3294 |
+
"step": 219
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 6.875,
|
3298 |
+
"grad_norm": 0.8464505810718659,
|
3299 |
+
"learning_rate": 2e-05,
|
3300 |
+
"loss": 0.686,
|
3301 |
+
"step": 220
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 6.875,
|
3305 |
+
"eval_loss": 0.6835823059082031,
|
3306 |
+
"eval_runtime": 57.2105,
|
3307 |
+
"eval_samples_per_second": 3.496,
|
3308 |
+
"eval_steps_per_second": 0.437,
|
3309 |
+
"step": 220
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 6.90625,
|
3313 |
+
"grad_norm": 0.7799140952562077,
|
3314 |
+
"learning_rate": 2e-05,
|
3315 |
+
"loss": 0.6503,
|
3316 |
+
"step": 221
|
3317 |
+
},
|
3318 |
+
{
|
3319 |
+
"epoch": 6.90625,
|
3320 |
+
"eval_loss": 0.6825523376464844,
|
3321 |
+
"eval_runtime": 57.0985,
|
3322 |
+
"eval_samples_per_second": 3.503,
|
3323 |
+
"eval_steps_per_second": 0.438,
|
3324 |
+
"step": 221
|
3325 |
+
},
|
3326 |
+
{
|
3327 |
+
"epoch": 6.9375,
|
3328 |
+
"grad_norm": 0.8495343756184095,
|
3329 |
+
"learning_rate": 2e-05,
|
3330 |
+
"loss": 0.6533,
|
3331 |
+
"step": 222
|
3332 |
+
},
|
3333 |
+
{
|
3334 |
+
"epoch": 6.9375,
|
3335 |
+
"eval_loss": 0.6813305616378784,
|
3336 |
+
"eval_runtime": 57.1896,
|
3337 |
+
"eval_samples_per_second": 3.497,
|
3338 |
+
"eval_steps_per_second": 0.437,
|
3339 |
+
"step": 222
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 6.96875,
|
3343 |
+
"grad_norm": 0.8191950862245413,
|
3344 |
+
"learning_rate": 2e-05,
|
3345 |
+
"loss": 0.6627,
|
3346 |
+
"step": 223
|
3347 |
+
},
|
3348 |
+
{
|
3349 |
+
"epoch": 6.96875,
|
3350 |
+
"eval_loss": 0.6800451874732971,
|
3351 |
+
"eval_runtime": 57.3904,
|
3352 |
+
"eval_samples_per_second": 3.485,
|
3353 |
+
"eval_steps_per_second": 0.436,
|
3354 |
+
"step": 223
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 7.0,
|
3358 |
+
"grad_norm": 0.8196747980504347,
|
3359 |
+
"learning_rate": 2e-05,
|
3360 |
+
"loss": 0.7337,
|
3361 |
+
"step": 224
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 7.0,
|
3365 |
+
"eval_loss": 0.6801488399505615,
|
3366 |
+
"eval_runtime": 59.0121,
|
3367 |
+
"eval_samples_per_second": 3.389,
|
3368 |
+
"eval_steps_per_second": 0.424,
|
3369 |
+
"step": 224
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 7.03125,
|
3373 |
+
"grad_norm": 0.7095908101379159,
|
3374 |
+
"learning_rate": 2e-05,
|
3375 |
+
"loss": 0.6203,
|
3376 |
+
"step": 225
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 7.03125,
|
3380 |
+
"eval_loss": 0.6816287040710449,
|
3381 |
+
"eval_runtime": 57.1754,
|
3382 |
+
"eval_samples_per_second": 3.498,
|
3383 |
+
"eval_steps_per_second": 0.437,
|
3384 |
+
"step": 225
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 7.0625,
|
3388 |
+
"grad_norm": 0.7916901149958031,
|
3389 |
+
"learning_rate": 2e-05,
|
3390 |
+
"loss": 0.5489,
|
3391 |
+
"step": 226
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 7.0625,
|
3395 |
+
"eval_loss": 0.6857742071151733,
|
3396 |
+
"eval_runtime": 58.0461,
|
3397 |
+
"eval_samples_per_second": 3.446,
|
3398 |
+
"eval_steps_per_second": 0.431,
|
3399 |
+
"step": 226
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 7.09375,
|
3403 |
+
"grad_norm": 0.8190252103616696,
|
3404 |
+
"learning_rate": 2e-05,
|
3405 |
+
"loss": 0.613,
|
3406 |
+
"step": 227
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 7.09375,
|
3410 |
+
"eval_loss": 0.6924745440483093,
|
3411 |
+
"eval_runtime": 58.351,
|
3412 |
+
"eval_samples_per_second": 3.428,
|
3413 |
+
"eval_steps_per_second": 0.428,
|
3414 |
+
"step": 227
|
3415 |
+
},
|
3416 |
+
{
|
3417 |
+
"epoch": 7.125,
|
3418 |
+
"grad_norm": 0.9385023798254423,
|
3419 |
+
"learning_rate": 2e-05,
|
3420 |
+
"loss": 0.5647,
|
3421 |
+
"step": 228
|
3422 |
+
},
|
3423 |
+
{
|
3424 |
+
"epoch": 7.125,
|
3425 |
+
"eval_loss": 0.7020445466041565,
|
3426 |
+
"eval_runtime": 58.1868,
|
3427 |
+
"eval_samples_per_second": 3.437,
|
3428 |
+
"eval_steps_per_second": 0.43,
|
3429 |
+
"step": 228
|
3430 |
+
},
|
3431 |
+
{
|
3432 |
+
"epoch": 7.15625,
|
3433 |
+
"grad_norm": 1.178887354836488,
|
3434 |
+
"learning_rate": 2e-05,
|
3435 |
+
"loss": 0.5957,
|
3436 |
+
"step": 229
|
3437 |
+
},
|
3438 |
+
{
|
3439 |
+
"epoch": 7.15625,
|
3440 |
+
"eval_loss": 0.7064430117607117,
|
3441 |
+
"eval_runtime": 58.3297,
|
3442 |
+
"eval_samples_per_second": 3.429,
|
3443 |
+
"eval_steps_per_second": 0.429,
|
3444 |
+
"step": 229
|
3445 |
+
},
|
3446 |
+
{
|
3447 |
+
"epoch": 7.1875,
|
3448 |
+
"grad_norm": 1.0054198258359948,
|
3449 |
+
"learning_rate": 2e-05,
|
3450 |
+
"loss": 0.5667,
|
3451 |
+
"step": 230
|
3452 |
+
},
|
3453 |
+
{
|
3454 |
+
"epoch": 7.1875,
|
3455 |
+
"eval_loss": 0.7060463428497314,
|
3456 |
+
"eval_runtime": 58.3212,
|
3457 |
+
"eval_samples_per_second": 3.429,
|
3458 |
+
"eval_steps_per_second": 0.429,
|
3459 |
+
"step": 230
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 7.21875,
|
3463 |
+
"grad_norm": 1.005055760217432,
|
3464 |
+
"learning_rate": 2e-05,
|
3465 |
+
"loss": 0.6546,
|
3466 |
+
"step": 231
|
3467 |
+
},
|
3468 |
+
{
|
3469 |
+
"epoch": 7.21875,
|
3470 |
+
"eval_loss": 0.7029504179954529,
|
3471 |
+
"eval_runtime": 58.0188,
|
3472 |
+
"eval_samples_per_second": 3.447,
|
3473 |
+
"eval_steps_per_second": 0.431,
|
3474 |
+
"step": 231
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 7.25,
|
3478 |
+
"grad_norm": 0.9458472260674603,
|
3479 |
+
"learning_rate": 2e-05,
|
3480 |
+
"loss": 0.6503,
|
3481 |
+
"step": 232
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 7.25,
|
3485 |
+
"eval_loss": 0.6988745927810669,
|
3486 |
+
"eval_runtime": 58.3149,
|
3487 |
+
"eval_samples_per_second": 3.43,
|
3488 |
+
"eval_steps_per_second": 0.429,
|
3489 |
+
"step": 232
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 7.28125,
|
3493 |
+
"grad_norm": 1.022594832986886,
|
3494 |
+
"learning_rate": 2e-05,
|
3495 |
+
"loss": 0.611,
|
3496 |
+
"step": 233
|
3497 |
+
},
|
3498 |
+
{
|
3499 |
+
"epoch": 7.28125,
|
3500 |
+
"eval_loss": 0.6943955421447754,
|
3501 |
+
"eval_runtime": 58.3693,
|
3502 |
+
"eval_samples_per_second": 3.426,
|
3503 |
+
"eval_steps_per_second": 0.428,
|
3504 |
+
"step": 233
|
3505 |
+
},
|
3506 |
+
{
|
3507 |
+
"epoch": 7.3125,
|
3508 |
+
"grad_norm": 0.8953283498269817,
|
3509 |
+
"learning_rate": 2e-05,
|
3510 |
+
"loss": 0.6438,
|
3511 |
+
"step": 234
|
3512 |
+
},
|
3513 |
+
{
|
3514 |
+
"epoch": 7.3125,
|
3515 |
+
"eval_loss": 0.6924715638160706,
|
3516 |
+
"eval_runtime": 58.214,
|
3517 |
+
"eval_samples_per_second": 3.436,
|
3518 |
+
"eval_steps_per_second": 0.429,
|
3519 |
+
"step": 234
|
3520 |
+
},
|
3521 |
+
{
|
3522 |
+
"epoch": 7.34375,
|
3523 |
+
"grad_norm": 0.9094812403228425,
|
3524 |
+
"learning_rate": 2e-05,
|
3525 |
+
"loss": 0.6123,
|
3526 |
+
"step": 235
|
3527 |
+
},
|
3528 |
+
{
|
3529 |
+
"epoch": 7.34375,
|
3530 |
+
"eval_loss": 0.690609335899353,
|
3531 |
+
"eval_runtime": 58.6042,
|
3532 |
+
"eval_samples_per_second": 3.413,
|
3533 |
+
"eval_steps_per_second": 0.427,
|
3534 |
+
"step": 235
|
3535 |
+
},
|
3536 |
+
{
|
3537 |
+
"epoch": 7.375,
|
3538 |
+
"grad_norm": 0.9433427892139121,
|
3539 |
+
"learning_rate": 2e-05,
|
3540 |
+
"loss": 0.5772,
|
3541 |
+
"step": 236
|
3542 |
+
},
|
3543 |
+
{
|
3544 |
+
"epoch": 7.375,
|
3545 |
+
"eval_loss": 0.6895288825035095,
|
3546 |
+
"eval_runtime": 58.0083,
|
3547 |
+
"eval_samples_per_second": 3.448,
|
3548 |
+
"eval_steps_per_second": 0.431,
|
3549 |
+
"step": 236
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 7.40625,
|
3553 |
+
"grad_norm": 0.9654218046347709,
|
3554 |
+
"learning_rate": 2e-05,
|
3555 |
+
"loss": 0.62,
|
3556 |
+
"step": 237
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 7.40625,
|
3560 |
+
"eval_loss": 0.6887797713279724,
|
3561 |
+
"eval_runtime": 58.1374,
|
3562 |
+
"eval_samples_per_second": 3.44,
|
3563 |
+
"eval_steps_per_second": 0.43,
|
3564 |
+
"step": 237
|
3565 |
+
},
|
3566 |
+
{
|
3567 |
+
"epoch": 7.4375,
|
3568 |
+
"grad_norm": 1.033591761626784,
|
3569 |
+
"learning_rate": 2e-05,
|
3570 |
+
"loss": 0.6163,
|
3571 |
+
"step": 238
|
3572 |
+
},
|
3573 |
+
{
|
3574 |
+
"epoch": 7.4375,
|
3575 |
+
"eval_loss": 0.6888651847839355,
|
3576 |
+
"eval_runtime": 58.2539,
|
3577 |
+
"eval_samples_per_second": 3.433,
|
3578 |
+
"eval_steps_per_second": 0.429,
|
3579 |
+
"step": 238
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 7.46875,
|
3583 |
+
"grad_norm": 0.9059638854254064,
|
3584 |
+
"learning_rate": 2e-05,
|
3585 |
+
"loss": 0.6364,
|
3586 |
+
"step": 239
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 7.46875,
|
3590 |
+
"eval_loss": 0.6905540227890015,
|
3591 |
+
"eval_runtime": 58.0992,
|
3592 |
+
"eval_samples_per_second": 3.442,
|
3593 |
+
"eval_steps_per_second": 0.43,
|
3594 |
+
"step": 239
|
3595 |
+
},
|
3596 |
+
{
|
3597 |
+
"epoch": 7.5,
|
3598 |
+
"grad_norm": 0.9193726862314907,
|
3599 |
+
"learning_rate": 2e-05,
|
3600 |
+
"loss": 0.5845,
|
3601 |
+
"step": 240
|
3602 |
+
},
|
3603 |
+
{
|
3604 |
+
"epoch": 7.5,
|
3605 |
+
"eval_loss": 0.693742036819458,
|
3606 |
+
"eval_runtime": 58.2336,
|
3607 |
+
"eval_samples_per_second": 3.434,
|
3608 |
+
"eval_steps_per_second": 0.429,
|
3609 |
+
"step": 240
|
3610 |
+
},
|
3611 |
+
{
|
3612 |
+
"epoch": 7.53125,
|
3613 |
+
"grad_norm": 0.8539139714986941,
|
3614 |
+
"learning_rate": 2e-05,
|
3615 |
+
"loss": 0.6344,
|
3616 |
+
"step": 241
|
3617 |
+
},
|
3618 |
+
{
|
3619 |
+
"epoch": 7.53125,
|
3620 |
+
"eval_loss": 0.696897566318512,
|
3621 |
+
"eval_runtime": 59.3124,
|
3622 |
+
"eval_samples_per_second": 3.372,
|
3623 |
+
"eval_steps_per_second": 0.421,
|
3624 |
+
"step": 241
|
3625 |
+
},
|
3626 |
+
{
|
3627 |
+
"epoch": 7.5625,
|
3628 |
+
"grad_norm": 0.9552275495908527,
|
3629 |
+
"learning_rate": 2e-05,
|
3630 |
+
"loss": 0.6159,
|
3631 |
+
"step": 242
|
3632 |
+
},
|
3633 |
+
{
|
3634 |
+
"epoch": 7.5625,
|
3635 |
+
"eval_loss": 0.6991227865219116,
|
3636 |
+
"eval_runtime": 58.1037,
|
3637 |
+
"eval_samples_per_second": 3.442,
|
3638 |
+
"eval_steps_per_second": 0.43,
|
3639 |
+
"step": 242
|
3640 |
+
},
|
3641 |
+
{
|
3642 |
+
"epoch": 7.59375,
|
3643 |
+
"grad_norm": 0.8953175982318474,
|
3644 |
+
"learning_rate": 2e-05,
|
3645 |
+
"loss": 0.5934,
|
3646 |
+
"step": 243
|
3647 |
+
},
|
3648 |
+
{
|
3649 |
+
"epoch": 7.59375,
|
3650 |
+
"eval_loss": 0.7009669542312622,
|
3651 |
+
"eval_runtime": 59.9178,
|
3652 |
+
"eval_samples_per_second": 3.338,
|
3653 |
+
"eval_steps_per_second": 0.417,
|
3654 |
+
"step": 243
|
3655 |
+
},
|
3656 |
+
{
|
3657 |
+
"epoch": 7.625,
|
3658 |
+
"grad_norm": 1.1254017430464345,
|
3659 |
+
"learning_rate": 2e-05,
|
3660 |
+
"loss": 0.6721,
|
3661 |
+
"step": 244
|
3662 |
+
},
|
3663 |
+
{
|
3664 |
+
"epoch": 7.625,
|
3665 |
+
"eval_loss": 0.7003803253173828,
|
3666 |
+
"eval_runtime": 59.9278,
|
3667 |
+
"eval_samples_per_second": 3.337,
|
3668 |
+
"eval_steps_per_second": 0.417,
|
3669 |
+
"step": 244
|
3670 |
+
},
|
3671 |
+
{
|
3672 |
+
"epoch": 7.65625,
|
3673 |
+
"grad_norm": 0.9666525684896161,
|
3674 |
+
"learning_rate": 2e-05,
|
3675 |
+
"loss": 0.5793,
|
3676 |
+
"step": 245
|
3677 |
+
},
|
3678 |
+
{
|
3679 |
+
"epoch": 7.65625,
|
3680 |
+
"eval_loss": 0.6997054815292358,
|
3681 |
+
"eval_runtime": 58.3355,
|
3682 |
+
"eval_samples_per_second": 3.428,
|
3683 |
+
"eval_steps_per_second": 0.429,
|
3684 |
+
"step": 245
|
3685 |
+
},
|
3686 |
+
{
|
3687 |
+
"epoch": 7.6875,
|
3688 |
+
"grad_norm": 1.0500213825228455,
|
3689 |
+
"learning_rate": 2e-05,
|
3690 |
+
"loss": 0.6262,
|
3691 |
+
"step": 246
|
3692 |
+
},
|
3693 |
+
{
|
3694 |
+
"epoch": 7.6875,
|
3695 |
+
"eval_loss": 0.6956760883331299,
|
3696 |
+
"eval_runtime": 57.9053,
|
3697 |
+
"eval_samples_per_second": 3.454,
|
3698 |
+
"eval_steps_per_second": 0.432,
|
3699 |
+
"step": 246
|
3700 |
+
},
|
3701 |
+
{
|
3702 |
+
"epoch": 7.71875,
|
3703 |
+
"grad_norm": 1.0445166827193935,
|
3704 |
+
"learning_rate": 2e-05,
|
3705 |
+
"loss": 0.6111,
|
3706 |
+
"step": 247
|
3707 |
+
},
|
3708 |
+
{
|
3709 |
+
"epoch": 7.71875,
|
3710 |
+
"eval_loss": 0.6909776329994202,
|
3711 |
+
"eval_runtime": 58.1856,
|
3712 |
+
"eval_samples_per_second": 3.437,
|
3713 |
+
"eval_steps_per_second": 0.43,
|
3714 |
+
"step": 247
|
3715 |
+
},
|
3716 |
+
{
|
3717 |
+
"epoch": 7.75,
|
3718 |
+
"grad_norm": 0.8935484171996528,
|
3719 |
+
"learning_rate": 2e-05,
|
3720 |
+
"loss": 0.6036,
|
3721 |
+
"step": 248
|
3722 |
+
},
|
3723 |
+
{
|
3724 |
+
"epoch": 7.75,
|
3725 |
+
"eval_loss": 0.6887417435646057,
|
3726 |
+
"eval_runtime": 58.1651,
|
3727 |
+
"eval_samples_per_second": 3.438,
|
3728 |
+
"eval_steps_per_second": 0.43,
|
3729 |
+
"step": 248
|
3730 |
+
},
|
3731 |
+
{
|
3732 |
+
"epoch": 7.78125,
|
3733 |
+
"grad_norm": 0.9329951454150782,
|
3734 |
+
"learning_rate": 2e-05,
|
3735 |
+
"loss": 0.6434,
|
3736 |
+
"step": 249
|
3737 |
+
},
|
3738 |
+
{
|
3739 |
+
"epoch": 7.78125,
|
3740 |
+
"eval_loss": 0.6893429756164551,
|
3741 |
+
"eval_runtime": 58.4106,
|
3742 |
+
"eval_samples_per_second": 3.424,
|
3743 |
+
"eval_steps_per_second": 0.428,
|
3744 |
+
"step": 249
|
3745 |
+
},
|
3746 |
+
{
|
3747 |
+
"epoch": 7.8125,
|
3748 |
+
"grad_norm": 0.8799352767832798,
|
3749 |
+
"learning_rate": 2e-05,
|
3750 |
+
"loss": 0.6519,
|
3751 |
+
"step": 250
|
3752 |
+
},
|
3753 |
+
{
|
3754 |
+
"epoch": 7.8125,
|
3755 |
+
"eval_loss": 0.6929408311843872,
|
3756 |
+
"eval_runtime": 58.3105,
|
3757 |
+
"eval_samples_per_second": 3.43,
|
3758 |
+
"eval_steps_per_second": 0.429,
|
3759 |
+
"step": 250
|
3760 |
+
},
|
3761 |
+
{
|
3762 |
+
"epoch": 7.84375,
|
3763 |
+
"grad_norm": 0.9322996227983372,
|
3764 |
+
"learning_rate": 2e-05,
|
3765 |
+
"loss": 0.5684,
|
3766 |
+
"step": 251
|
3767 |
+
},
|
3768 |
+
{
|
3769 |
+
"epoch": 7.84375,
|
3770 |
+
"eval_loss": 0.6954038739204407,
|
3771 |
+
"eval_runtime": 57.8998,
|
3772 |
+
"eval_samples_per_second": 3.454,
|
3773 |
+
"eval_steps_per_second": 0.432,
|
3774 |
+
"step": 251
|
3775 |
+
},
|
3776 |
+
{
|
3777 |
+
"epoch": 7.875,
|
3778 |
+
"grad_norm": 1.0904651907324217,
|
3779 |
+
"learning_rate": 2e-05,
|
3780 |
+
"loss": 0.5851,
|
3781 |
+
"step": 252
|
3782 |
+
},
|
3783 |
+
{
|
3784 |
+
"epoch": 7.875,
|
3785 |
+
"eval_loss": 0.6938650012016296,
|
3786 |
+
"eval_runtime": 58.4905,
|
3787 |
+
"eval_samples_per_second": 3.419,
|
3788 |
+
"eval_steps_per_second": 0.427,
|
3789 |
+
"step": 252
|
3790 |
+
},
|
3791 |
+
{
|
3792 |
+
"epoch": 7.90625,
|
3793 |
+
"grad_norm": 1.0103592741616823,
|
3794 |
+
"learning_rate": 2e-05,
|
3795 |
+
"loss": 0.6655,
|
3796 |
+
"step": 253
|
3797 |
+
},
|
3798 |
+
{
|
3799 |
+
"epoch": 7.90625,
|
3800 |
+
"eval_loss": 0.6909225583076477,
|
3801 |
+
"eval_runtime": 58.1801,
|
3802 |
+
"eval_samples_per_second": 3.438,
|
3803 |
+
"eval_steps_per_second": 0.43,
|
3804 |
+
"step": 253
|
3805 |
+
},
|
3806 |
+
{
|
3807 |
+
"epoch": 7.9375,
|
3808 |
+
"grad_norm": 0.9208541649120607,
|
3809 |
+
"learning_rate": 2e-05,
|
3810 |
+
"loss": 0.6051,
|
3811 |
+
"step": 254
|
3812 |
+
},
|
3813 |
+
{
|
3814 |
+
"epoch": 7.9375,
|
3815 |
+
"eval_loss": 0.6913868188858032,
|
3816 |
+
"eval_runtime": 58.4224,
|
3817 |
+
"eval_samples_per_second": 3.423,
|
3818 |
+
"eval_steps_per_second": 0.428,
|
3819 |
+
"step": 254
|
3820 |
+
},
|
3821 |
+
{
|
3822 |
+
"epoch": 7.96875,
|
3823 |
+
"grad_norm": 0.9567638724372727,
|
3824 |
+
"learning_rate": 2e-05,
|
3825 |
+
"loss": 0.5529,
|
3826 |
+
"step": 255
|
3827 |
+
},
|
3828 |
+
{
|
3829 |
+
"epoch": 7.96875,
|
3830 |
+
"eval_loss": 0.6918243169784546,
|
3831 |
+
"eval_runtime": 58.1569,
|
3832 |
+
"eval_samples_per_second": 3.439,
|
3833 |
+
"eval_steps_per_second": 0.43,
|
3834 |
+
"step": 255
|
3835 |
+
},
|
3836 |
+
{
|
3837 |
+
"epoch": 8.0,
|
3838 |
+
"grad_norm": 0.8913592607849594,
|
3839 |
+
"learning_rate": 2e-05,
|
3840 |
+
"loss": 0.6076,
|
3841 |
+
"step": 256
|
3842 |
+
},
|
3843 |
+
{
|
3844 |
+
"epoch": 8.0,
|
3845 |
+
"eval_loss": 0.6921086311340332,
|
3846 |
+
"eval_runtime": 58.8193,
|
3847 |
+
"eval_samples_per_second": 3.4,
|
3848 |
+
"eval_steps_per_second": 0.425,
|
3849 |
+
"step": 256
|
3850 |
+
}
|
3851 |
+
],
|
3852 |
+
"logging_steps": 1.0,
|
3853 |
+
"max_steps": 256,
|
3854 |
+
"num_input_tokens_seen": 0,
|
3855 |
+
"num_train_epochs": 8,
|
3856 |
+
"save_steps": 5,
|
3857 |
+
"stateful_callbacks": {
|
3858 |
+
"TrainerControl": {
|
3859 |
+
"args": {
|
3860 |
+
"should_epoch_stop": false,
|
3861 |
+
"should_evaluate": false,
|
3862 |
+
"should_log": false,
|
3863 |
+
"should_save": true,
|
3864 |
+
"should_training_stop": true
|
3865 |
+
},
|
3866 |
+
"attributes": {}
|
3867 |
+
}
|
3868 |
+
},
|
3869 |
+
"total_flos": 77213396434944.0,
|
3870 |
+
"train_batch_size": 16,
|
3871 |
+
"trial_name": null,
|
3872 |
+
"trial_params": null
|
3873 |
+
}
|
checkpoint-256/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd8face63c0b0fee0d64c02b7b6deb6cbb7ff1b27dee7fdb6d6276b3d41ba9e1
|
3 |
+
size 8248
|
checkpoint-256/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "liuhaotian/llava-v1.6-vicuna-7b",
|
4 |
+
"architectures": [
|
5 |
+
"LlavaLlamaForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_bias": false,
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"freeze_mm_mlp_adapter": false,
|
12 |
+
"freeze_mm_vision_resampler": false,
|
13 |
+
"head_dim": 128,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 4096,
|
16 |
+
"image_aspect_ratio": "pad",
|
17 |
+
"image_crop_resolution": 224,
|
18 |
+
"image_grid_pinpoints": [
|
19 |
+
[
|
20 |
+
336,
|
21 |
+
672
|
22 |
+
],
|
23 |
+
[
|
24 |
+
672,
|
25 |
+
336
|
26 |
+
],
|
27 |
+
[
|
28 |
+
672,
|
29 |
+
672
|
30 |
+
],
|
31 |
+
[
|
32 |
+
1008,
|
33 |
+
336
|
34 |
+
],
|
35 |
+
[
|
36 |
+
336,
|
37 |
+
1008
|
38 |
+
]
|
39 |
+
],
|
40 |
+
"image_split_resolution": 224,
|
41 |
+
"initializer_range": 0.02,
|
42 |
+
"intermediate_size": 11008,
|
43 |
+
"max_position_embeddings": 4096,
|
44 |
+
"mlp_bias": false,
|
45 |
+
"mm_hidden_size": 1024,
|
46 |
+
"mm_patch_merge_type": "flat",
|
47 |
+
"mm_projector_lr": 2e-05,
|
48 |
+
"mm_projector_type": "mlp2x_gelu",
|
49 |
+
"mm_resampler_type": null,
|
50 |
+
"mm_use_im_patch_token": false,
|
51 |
+
"mm_use_im_start_end": false,
|
52 |
+
"mm_vision_select_feature": "patch",
|
53 |
+
"mm_vision_select_layer": -2,
|
54 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
55 |
+
"mm_vision_tower_lr": 2e-06,
|
56 |
+
"model_type": "llava_llama",
|
57 |
+
"num_attention_heads": 32,
|
58 |
+
"num_hidden_layers": 32,
|
59 |
+
"num_key_value_heads": 32,
|
60 |
+
"pad_token_id": 0,
|
61 |
+
"pretraining_tp": 1,
|
62 |
+
"rms_norm_eps": 1e-05,
|
63 |
+
"rope_scaling": null,
|
64 |
+
"rope_theta": 10000.0,
|
65 |
+
"tie_word_embeddings": false,
|
66 |
+
"tokenizer_model_max_length": 2048,
|
67 |
+
"tokenizer_padding_side": "right",
|
68 |
+
"torch_dtype": "bfloat16",
|
69 |
+
"transformers_version": "4.46.0",
|
70 |
+
"tune_mm_mlp_adapter": false,
|
71 |
+
"tune_mm_vision_resampler": false,
|
72 |
+
"unfreeze_mm_vision_tower": true,
|
73 |
+
"use_cache": true,
|
74 |
+
"use_mm_proj": true,
|
75 |
+
"vocab_size": 32000
|
76 |
+
}
|
non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5b33db1d75aebca3750916c8d72d76e106495d43c3fa488e02fa182be5b4914
|
3 |
+
size 41961648
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:298c536ff09cc90a2fd9be88e0b78784be8db89a258a8ebc6ac1760dbc7a9093
|
3 |
+
size 379898402
|
trainer_state.json
ADDED
@@ -0,0 +1,3882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6816287040710449,
|
3 |
+
"best_model_checkpoint": "./checkpoints/llava-v1.6-vicuna-7b/checkpoint-225",
|
4 |
+
"epoch": 8.0,
|
5 |
+
"eval_steps": 1.0,
|
6 |
+
"global_step": 256,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03125,
|
13 |
+
"grad_norm": 1.3320099054231718,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.3851,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03125,
|
20 |
+
"eval_loss": 1.3910757303237915,
|
21 |
+
"eval_runtime": 63.0135,
|
22 |
+
"eval_samples_per_second": 3.174,
|
23 |
+
"eval_steps_per_second": 0.397,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.0625,
|
28 |
+
"grad_norm": 1.0473401758450829,
|
29 |
+
"learning_rate": 8.613531161467863e-06,
|
30 |
+
"loss": 1.3255,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.0625,
|
35 |
+
"eval_loss": 1.3910757303237915,
|
36 |
+
"eval_runtime": 56.9747,
|
37 |
+
"eval_samples_per_second": 3.51,
|
38 |
+
"eval_steps_per_second": 0.439,
|
39 |
+
"step": 2
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.09375,
|
43 |
+
"grad_norm": 1.0429876090069883,
|
44 |
+
"learning_rate": 1.3652123889719709e-05,
|
45 |
+
"loss": 1.3737,
|
46 |
+
"step": 3
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.09375,
|
50 |
+
"eval_loss": 1.3638323545455933,
|
51 |
+
"eval_runtime": 56.6988,
|
52 |
+
"eval_samples_per_second": 3.527,
|
53 |
+
"eval_steps_per_second": 0.441,
|
54 |
+
"step": 3
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.125,
|
58 |
+
"grad_norm": 0.9193695742967616,
|
59 |
+
"learning_rate": 1.7227062322935725e-05,
|
60 |
+
"loss": 1.3309,
|
61 |
+
"step": 4
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.125,
|
65 |
+
"eval_loss": 1.3227791786193848,
|
66 |
+
"eval_runtime": 56.6188,
|
67 |
+
"eval_samples_per_second": 3.532,
|
68 |
+
"eval_steps_per_second": 0.442,
|
69 |
+
"step": 4
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15625,
|
73 |
+
"grad_norm": 1.0043594584185398,
|
74 |
+
"learning_rate": 2e-05,
|
75 |
+
"loss": 1.2984,
|
76 |
+
"step": 5
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.15625,
|
80 |
+
"eval_loss": 1.2728056907653809,
|
81 |
+
"eval_runtime": 58.8213,
|
82 |
+
"eval_samples_per_second": 3.4,
|
83 |
+
"eval_steps_per_second": 0.425,
|
84 |
+
"step": 5
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.1875,
|
88 |
+
"grad_norm": 0.8222566364005439,
|
89 |
+
"learning_rate": 2e-05,
|
90 |
+
"loss": 1.2639,
|
91 |
+
"step": 6
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.1875,
|
95 |
+
"eval_loss": 1.2296103239059448,
|
96 |
+
"eval_runtime": 56.6504,
|
97 |
+
"eval_samples_per_second": 3.53,
|
98 |
+
"eval_steps_per_second": 0.441,
|
99 |
+
"step": 6
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.21875,
|
103 |
+
"grad_norm": 0.6389176248800544,
|
104 |
+
"learning_rate": 2e-05,
|
105 |
+
"loss": 1.2314,
|
106 |
+
"step": 7
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.21875,
|
110 |
+
"eval_loss": 1.1983529329299927,
|
111 |
+
"eval_runtime": 56.5641,
|
112 |
+
"eval_samples_per_second": 3.536,
|
113 |
+
"eval_steps_per_second": 0.442,
|
114 |
+
"step": 7
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.25,
|
118 |
+
"grad_norm": 0.599291017991319,
|
119 |
+
"learning_rate": 2e-05,
|
120 |
+
"loss": 1.2037,
|
121 |
+
"step": 8
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.25,
|
125 |
+
"eval_loss": 1.1734061241149902,
|
126 |
+
"eval_runtime": 56.6005,
|
127 |
+
"eval_samples_per_second": 3.534,
|
128 |
+
"eval_steps_per_second": 0.442,
|
129 |
+
"step": 8
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28125,
|
133 |
+
"grad_norm": 0.4952974010296138,
|
134 |
+
"learning_rate": 2e-05,
|
135 |
+
"loss": 1.226,
|
136 |
+
"step": 9
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.28125,
|
140 |
+
"eval_loss": 1.1502536535263062,
|
141 |
+
"eval_runtime": 56.7524,
|
142 |
+
"eval_samples_per_second": 3.524,
|
143 |
+
"eval_steps_per_second": 0.441,
|
144 |
+
"step": 9
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.3125,
|
148 |
+
"grad_norm": 0.4967350606769311,
|
149 |
+
"learning_rate": 2e-05,
|
150 |
+
"loss": 1.1613,
|
151 |
+
"step": 10
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.3125,
|
155 |
+
"eval_loss": 1.127350091934204,
|
156 |
+
"eval_runtime": 56.7569,
|
157 |
+
"eval_samples_per_second": 3.524,
|
158 |
+
"eval_steps_per_second": 0.44,
|
159 |
+
"step": 10
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.34375,
|
163 |
+
"grad_norm": 0.43644425188108293,
|
164 |
+
"learning_rate": 2e-05,
|
165 |
+
"loss": 1.2077,
|
166 |
+
"step": 11
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.34375,
|
170 |
+
"eval_loss": 1.104610562324524,
|
171 |
+
"eval_runtime": 56.607,
|
172 |
+
"eval_samples_per_second": 3.533,
|
173 |
+
"eval_steps_per_second": 0.442,
|
174 |
+
"step": 11
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.375,
|
178 |
+
"grad_norm": 0.4763392566533296,
|
179 |
+
"learning_rate": 2e-05,
|
180 |
+
"loss": 1.1593,
|
181 |
+
"step": 12
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.375,
|
185 |
+
"eval_loss": 1.0827140808105469,
|
186 |
+
"eval_runtime": 56.6548,
|
187 |
+
"eval_samples_per_second": 3.53,
|
188 |
+
"eval_steps_per_second": 0.441,
|
189 |
+
"step": 12
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.40625,
|
193 |
+
"grad_norm": 0.49138280391100253,
|
194 |
+
"learning_rate": 2e-05,
|
195 |
+
"loss": 1.1679,
|
196 |
+
"step": 13
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.40625,
|
200 |
+
"eval_loss": 1.0621232986450195,
|
201 |
+
"eval_runtime": 56.8147,
|
202 |
+
"eval_samples_per_second": 3.52,
|
203 |
+
"eval_steps_per_second": 0.44,
|
204 |
+
"step": 13
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.4375,
|
208 |
+
"grad_norm": 0.4305508696222477,
|
209 |
+
"learning_rate": 2e-05,
|
210 |
+
"loss": 1.0008,
|
211 |
+
"step": 14
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.4375,
|
215 |
+
"eval_loss": 1.0437134504318237,
|
216 |
+
"eval_runtime": 56.7306,
|
217 |
+
"eval_samples_per_second": 3.525,
|
218 |
+
"eval_steps_per_second": 0.441,
|
219 |
+
"step": 14
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.46875,
|
223 |
+
"grad_norm": 0.39438622708065774,
|
224 |
+
"learning_rate": 2e-05,
|
225 |
+
"loss": 1.1206,
|
226 |
+
"step": 15
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.46875,
|
230 |
+
"eval_loss": 1.0277280807495117,
|
231 |
+
"eval_runtime": 56.6499,
|
232 |
+
"eval_samples_per_second": 3.53,
|
233 |
+
"eval_steps_per_second": 0.441,
|
234 |
+
"step": 15
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.5,
|
238 |
+
"grad_norm": 0.40300919769454296,
|
239 |
+
"learning_rate": 2e-05,
|
240 |
+
"loss": 1.0501,
|
241 |
+
"step": 16
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.5,
|
245 |
+
"eval_loss": 1.0134528875350952,
|
246 |
+
"eval_runtime": 56.3333,
|
247 |
+
"eval_samples_per_second": 3.55,
|
248 |
+
"eval_steps_per_second": 0.444,
|
249 |
+
"step": 16
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.53125,
|
253 |
+
"grad_norm": 0.35230570754831836,
|
254 |
+
"learning_rate": 2e-05,
|
255 |
+
"loss": 1.0593,
|
256 |
+
"step": 17
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.53125,
|
260 |
+
"eval_loss": 1.0004419088363647,
|
261 |
+
"eval_runtime": 56.6019,
|
262 |
+
"eval_samples_per_second": 3.533,
|
263 |
+
"eval_steps_per_second": 0.442,
|
264 |
+
"step": 17
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.5625,
|
268 |
+
"grad_norm": 0.37606931260721715,
|
269 |
+
"learning_rate": 2e-05,
|
270 |
+
"loss": 1.0482,
|
271 |
+
"step": 18
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.5625,
|
275 |
+
"eval_loss": 0.9879937767982483,
|
276 |
+
"eval_runtime": 56.6945,
|
277 |
+
"eval_samples_per_second": 3.528,
|
278 |
+
"eval_steps_per_second": 0.441,
|
279 |
+
"step": 18
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.59375,
|
283 |
+
"grad_norm": 0.2941404563021841,
|
284 |
+
"learning_rate": 2e-05,
|
285 |
+
"loss": 0.9707,
|
286 |
+
"step": 19
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.59375,
|
290 |
+
"eval_loss": 0.976818859577179,
|
291 |
+
"eval_runtime": 56.6805,
|
292 |
+
"eval_samples_per_second": 3.529,
|
293 |
+
"eval_steps_per_second": 0.441,
|
294 |
+
"step": 19
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.625,
|
298 |
+
"grad_norm": 0.2958263397509482,
|
299 |
+
"learning_rate": 2e-05,
|
300 |
+
"loss": 1.091,
|
301 |
+
"step": 20
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.625,
|
305 |
+
"eval_loss": 0.9669834971427917,
|
306 |
+
"eval_runtime": 57.6231,
|
307 |
+
"eval_samples_per_second": 3.471,
|
308 |
+
"eval_steps_per_second": 0.434,
|
309 |
+
"step": 20
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.65625,
|
313 |
+
"grad_norm": 0.2485896802049987,
|
314 |
+
"learning_rate": 2e-05,
|
315 |
+
"loss": 1.0041,
|
316 |
+
"step": 21
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 0.65625,
|
320 |
+
"eval_loss": 0.9583450555801392,
|
321 |
+
"eval_runtime": 56.5142,
|
322 |
+
"eval_samples_per_second": 3.539,
|
323 |
+
"eval_steps_per_second": 0.442,
|
324 |
+
"step": 21
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.6875,
|
328 |
+
"grad_norm": 0.296994298254859,
|
329 |
+
"learning_rate": 2e-05,
|
330 |
+
"loss": 1.055,
|
331 |
+
"step": 22
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6875,
|
335 |
+
"eval_loss": 0.9502925276756287,
|
336 |
+
"eval_runtime": 56.6393,
|
337 |
+
"eval_samples_per_second": 3.531,
|
338 |
+
"eval_steps_per_second": 0.441,
|
339 |
+
"step": 22
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.71875,
|
343 |
+
"grad_norm": 0.2499735192340966,
|
344 |
+
"learning_rate": 2e-05,
|
345 |
+
"loss": 1.04,
|
346 |
+
"step": 23
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.71875,
|
350 |
+
"eval_loss": 0.9427899122238159,
|
351 |
+
"eval_runtime": 56.5467,
|
352 |
+
"eval_samples_per_second": 3.537,
|
353 |
+
"eval_steps_per_second": 0.442,
|
354 |
+
"step": 23
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.75,
|
358 |
+
"grad_norm": 0.23614468035916372,
|
359 |
+
"learning_rate": 2e-05,
|
360 |
+
"loss": 1.0387,
|
361 |
+
"step": 24
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.75,
|
365 |
+
"eval_loss": 0.9359552264213562,
|
366 |
+
"eval_runtime": 56.8371,
|
367 |
+
"eval_samples_per_second": 3.519,
|
368 |
+
"eval_steps_per_second": 0.44,
|
369 |
+
"step": 24
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.78125,
|
373 |
+
"grad_norm": 0.2597610358499704,
|
374 |
+
"learning_rate": 2e-05,
|
375 |
+
"loss": 0.9821,
|
376 |
+
"step": 25
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.78125,
|
380 |
+
"eval_loss": 0.929139256477356,
|
381 |
+
"eval_runtime": 56.659,
|
382 |
+
"eval_samples_per_second": 3.53,
|
383 |
+
"eval_steps_per_second": 0.441,
|
384 |
+
"step": 25
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.8125,
|
388 |
+
"grad_norm": 0.2483654904520099,
|
389 |
+
"learning_rate": 2e-05,
|
390 |
+
"loss": 1.0139,
|
391 |
+
"step": 26
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.8125,
|
395 |
+
"eval_loss": 0.9226005673408508,
|
396 |
+
"eval_runtime": 56.4669,
|
397 |
+
"eval_samples_per_second": 3.542,
|
398 |
+
"eval_steps_per_second": 0.443,
|
399 |
+
"step": 26
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.84375,
|
403 |
+
"grad_norm": 0.2814780741041167,
|
404 |
+
"learning_rate": 2e-05,
|
405 |
+
"loss": 0.9374,
|
406 |
+
"step": 27
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.84375,
|
410 |
+
"eval_loss": 0.9160022735595703,
|
411 |
+
"eval_runtime": 56.6558,
|
412 |
+
"eval_samples_per_second": 3.53,
|
413 |
+
"eval_steps_per_second": 0.441,
|
414 |
+
"step": 27
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.875,
|
418 |
+
"grad_norm": 0.29993540247195477,
|
419 |
+
"learning_rate": 2e-05,
|
420 |
+
"loss": 0.948,
|
421 |
+
"step": 28
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.875,
|
425 |
+
"eval_loss": 0.9092594981193542,
|
426 |
+
"eval_runtime": 56.743,
|
427 |
+
"eval_samples_per_second": 3.525,
|
428 |
+
"eval_steps_per_second": 0.441,
|
429 |
+
"step": 28
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.90625,
|
433 |
+
"grad_norm": 0.24302264777949295,
|
434 |
+
"learning_rate": 2e-05,
|
435 |
+
"loss": 0.9676,
|
436 |
+
"step": 29
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.90625,
|
440 |
+
"eval_loss": 0.9028491377830505,
|
441 |
+
"eval_runtime": 56.802,
|
442 |
+
"eval_samples_per_second": 3.521,
|
443 |
+
"eval_steps_per_second": 0.44,
|
444 |
+
"step": 29
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.9375,
|
448 |
+
"grad_norm": 0.28001197555170687,
|
449 |
+
"learning_rate": 2e-05,
|
450 |
+
"loss": 1.0044,
|
451 |
+
"step": 30
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.9375,
|
455 |
+
"eval_loss": 0.8969234228134155,
|
456 |
+
"eval_runtime": 56.8402,
|
457 |
+
"eval_samples_per_second": 3.519,
|
458 |
+
"eval_steps_per_second": 0.44,
|
459 |
+
"step": 30
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.96875,
|
463 |
+
"grad_norm": 0.26990828196944483,
|
464 |
+
"learning_rate": 2e-05,
|
465 |
+
"loss": 0.8417,
|
466 |
+
"step": 31
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.96875,
|
470 |
+
"eval_loss": 0.890943169593811,
|
471 |
+
"eval_runtime": 56.9987,
|
472 |
+
"eval_samples_per_second": 3.509,
|
473 |
+
"eval_steps_per_second": 0.439,
|
474 |
+
"step": 31
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 1.0,
|
478 |
+
"grad_norm": 0.25976007498641823,
|
479 |
+
"learning_rate": 2e-05,
|
480 |
+
"loss": 0.95,
|
481 |
+
"step": 32
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 1.0,
|
485 |
+
"eval_loss": 0.8852173686027527,
|
486 |
+
"eval_runtime": 56.722,
|
487 |
+
"eval_samples_per_second": 3.526,
|
488 |
+
"eval_steps_per_second": 0.441,
|
489 |
+
"step": 32
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.03125,
|
493 |
+
"grad_norm": 0.29530149620990226,
|
494 |
+
"learning_rate": 2e-05,
|
495 |
+
"loss": 0.9931,
|
496 |
+
"step": 33
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 1.03125,
|
500 |
+
"eval_loss": 0.8795143961906433,
|
501 |
+
"eval_runtime": 56.8541,
|
502 |
+
"eval_samples_per_second": 3.518,
|
503 |
+
"eval_steps_per_second": 0.44,
|
504 |
+
"step": 33
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.0625,
|
508 |
+
"grad_norm": 0.2759239362577793,
|
509 |
+
"learning_rate": 2e-05,
|
510 |
+
"loss": 0.9978,
|
511 |
+
"step": 34
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 1.0625,
|
515 |
+
"eval_loss": 0.8741766214370728,
|
516 |
+
"eval_runtime": 56.7708,
|
517 |
+
"eval_samples_per_second": 3.523,
|
518 |
+
"eval_steps_per_second": 0.44,
|
519 |
+
"step": 34
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.09375,
|
523 |
+
"grad_norm": 0.246531740102282,
|
524 |
+
"learning_rate": 2e-05,
|
525 |
+
"loss": 1.0163,
|
526 |
+
"step": 35
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 1.09375,
|
530 |
+
"eval_loss": 0.8691757321357727,
|
531 |
+
"eval_runtime": 56.8382,
|
532 |
+
"eval_samples_per_second": 3.519,
|
533 |
+
"eval_steps_per_second": 0.44,
|
534 |
+
"step": 35
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.125,
|
538 |
+
"grad_norm": 0.2646078522027086,
|
539 |
+
"learning_rate": 2e-05,
|
540 |
+
"loss": 0.971,
|
541 |
+
"step": 36
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.125,
|
545 |
+
"eval_loss": 0.8643682599067688,
|
546 |
+
"eval_runtime": 56.689,
|
547 |
+
"eval_samples_per_second": 3.528,
|
548 |
+
"eval_steps_per_second": 0.441,
|
549 |
+
"step": 36
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.15625,
|
553 |
+
"grad_norm": 0.2395171492146917,
|
554 |
+
"learning_rate": 2e-05,
|
555 |
+
"loss": 0.9227,
|
556 |
+
"step": 37
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 1.15625,
|
560 |
+
"eval_loss": 0.8600785136222839,
|
561 |
+
"eval_runtime": 56.72,
|
562 |
+
"eval_samples_per_second": 3.526,
|
563 |
+
"eval_steps_per_second": 0.441,
|
564 |
+
"step": 37
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 1.1875,
|
568 |
+
"grad_norm": 0.28215229152733834,
|
569 |
+
"learning_rate": 2e-05,
|
570 |
+
"loss": 0.9308,
|
571 |
+
"step": 38
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 1.1875,
|
575 |
+
"eval_loss": 0.8562959432601929,
|
576 |
+
"eval_runtime": 56.8289,
|
577 |
+
"eval_samples_per_second": 3.519,
|
578 |
+
"eval_steps_per_second": 0.44,
|
579 |
+
"step": 38
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.21875,
|
583 |
+
"grad_norm": 0.27116244597267625,
|
584 |
+
"learning_rate": 2e-05,
|
585 |
+
"loss": 0.9563,
|
586 |
+
"step": 39
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 1.21875,
|
590 |
+
"eval_loss": 0.8526366949081421,
|
591 |
+
"eval_runtime": 56.6829,
|
592 |
+
"eval_samples_per_second": 3.528,
|
593 |
+
"eval_steps_per_second": 0.441,
|
594 |
+
"step": 39
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.25,
|
598 |
+
"grad_norm": 0.2623711894386991,
|
599 |
+
"learning_rate": 2e-05,
|
600 |
+
"loss": 0.9535,
|
601 |
+
"step": 40
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.25,
|
605 |
+
"eval_loss": 0.8490655422210693,
|
606 |
+
"eval_runtime": 56.6874,
|
607 |
+
"eval_samples_per_second": 3.528,
|
608 |
+
"eval_steps_per_second": 0.441,
|
609 |
+
"step": 40
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.28125,
|
613 |
+
"grad_norm": 0.27251908150193377,
|
614 |
+
"learning_rate": 2e-05,
|
615 |
+
"loss": 0.9287,
|
616 |
+
"step": 41
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 1.28125,
|
620 |
+
"eval_loss": 0.8451938629150391,
|
621 |
+
"eval_runtime": 56.7117,
|
622 |
+
"eval_samples_per_second": 3.527,
|
623 |
+
"eval_steps_per_second": 0.441,
|
624 |
+
"step": 41
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 1.3125,
|
628 |
+
"grad_norm": 0.2642817191103673,
|
629 |
+
"learning_rate": 2e-05,
|
630 |
+
"loss": 0.9186,
|
631 |
+
"step": 42
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.3125,
|
635 |
+
"eval_loss": 0.8413894772529602,
|
636 |
+
"eval_runtime": 56.9042,
|
637 |
+
"eval_samples_per_second": 3.515,
|
638 |
+
"eval_steps_per_second": 0.439,
|
639 |
+
"step": 42
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.34375,
|
643 |
+
"grad_norm": 0.26857391288606197,
|
644 |
+
"learning_rate": 2e-05,
|
645 |
+
"loss": 0.8792,
|
646 |
+
"step": 43
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.34375,
|
650 |
+
"eval_loss": 0.8373947739601135,
|
651 |
+
"eval_runtime": 56.7211,
|
652 |
+
"eval_samples_per_second": 3.526,
|
653 |
+
"eval_steps_per_second": 0.441,
|
654 |
+
"step": 43
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.375,
|
658 |
+
"grad_norm": 0.2474531366673803,
|
659 |
+
"learning_rate": 2e-05,
|
660 |
+
"loss": 0.8965,
|
661 |
+
"step": 44
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.375,
|
665 |
+
"eval_loss": 0.8339560031890869,
|
666 |
+
"eval_runtime": 56.8277,
|
667 |
+
"eval_samples_per_second": 3.519,
|
668 |
+
"eval_steps_per_second": 0.44,
|
669 |
+
"step": 44
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.40625,
|
673 |
+
"grad_norm": 0.26467660282496797,
|
674 |
+
"learning_rate": 2e-05,
|
675 |
+
"loss": 0.8762,
|
676 |
+
"step": 45
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.40625,
|
680 |
+
"eval_loss": 0.8309465050697327,
|
681 |
+
"eval_runtime": 56.7019,
|
682 |
+
"eval_samples_per_second": 3.527,
|
683 |
+
"eval_steps_per_second": 0.441,
|
684 |
+
"step": 45
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 1.4375,
|
688 |
+
"grad_norm": 0.2652288034609541,
|
689 |
+
"learning_rate": 2e-05,
|
690 |
+
"loss": 0.9118,
|
691 |
+
"step": 46
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 1.4375,
|
695 |
+
"eval_loss": 0.8279169201850891,
|
696 |
+
"eval_runtime": 56.6271,
|
697 |
+
"eval_samples_per_second": 3.532,
|
698 |
+
"eval_steps_per_second": 0.441,
|
699 |
+
"step": 46
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.46875,
|
703 |
+
"grad_norm": 0.27355995161173785,
|
704 |
+
"learning_rate": 2e-05,
|
705 |
+
"loss": 0.9249,
|
706 |
+
"step": 47
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.46875,
|
710 |
+
"eval_loss": 0.8252391219139099,
|
711 |
+
"eval_runtime": 56.6323,
|
712 |
+
"eval_samples_per_second": 3.532,
|
713 |
+
"eval_steps_per_second": 0.441,
|
714 |
+
"step": 47
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 1.5,
|
718 |
+
"grad_norm": 0.2588399009432225,
|
719 |
+
"learning_rate": 2e-05,
|
720 |
+
"loss": 0.8359,
|
721 |
+
"step": 48
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.5,
|
725 |
+
"eval_loss": 0.8225956559181213,
|
726 |
+
"eval_runtime": 58.0142,
|
727 |
+
"eval_samples_per_second": 3.447,
|
728 |
+
"eval_steps_per_second": 0.431,
|
729 |
+
"step": 48
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.53125,
|
733 |
+
"grad_norm": 0.28116473918910634,
|
734 |
+
"learning_rate": 2e-05,
|
735 |
+
"loss": 0.846,
|
736 |
+
"step": 49
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 1.53125,
|
740 |
+
"eval_loss": 0.8198111057281494,
|
741 |
+
"eval_runtime": 56.6785,
|
742 |
+
"eval_samples_per_second": 3.529,
|
743 |
+
"eval_steps_per_second": 0.441,
|
744 |
+
"step": 49
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.5625,
|
748 |
+
"grad_norm": 0.30791508615928687,
|
749 |
+
"learning_rate": 2e-05,
|
750 |
+
"loss": 0.8364,
|
751 |
+
"step": 50
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.5625,
|
755 |
+
"eval_loss": 0.816419243812561,
|
756 |
+
"eval_runtime": 56.7867,
|
757 |
+
"eval_samples_per_second": 3.522,
|
758 |
+
"eval_steps_per_second": 0.44,
|
759 |
+
"step": 50
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.59375,
|
763 |
+
"grad_norm": 0.2635774938006065,
|
764 |
+
"learning_rate": 2e-05,
|
765 |
+
"loss": 0.8565,
|
766 |
+
"step": 51
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.59375,
|
770 |
+
"eval_loss": 0.8128839731216431,
|
771 |
+
"eval_runtime": 56.5904,
|
772 |
+
"eval_samples_per_second": 3.534,
|
773 |
+
"eval_steps_per_second": 0.442,
|
774 |
+
"step": 51
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 1.625,
|
778 |
+
"grad_norm": 0.25740594308086223,
|
779 |
+
"learning_rate": 2e-05,
|
780 |
+
"loss": 0.7573,
|
781 |
+
"step": 52
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.625,
|
785 |
+
"eval_loss": 0.8096449971199036,
|
786 |
+
"eval_runtime": 56.7381,
|
787 |
+
"eval_samples_per_second": 3.525,
|
788 |
+
"eval_steps_per_second": 0.441,
|
789 |
+
"step": 52
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.65625,
|
793 |
+
"grad_norm": 0.25917235006885775,
|
794 |
+
"learning_rate": 2e-05,
|
795 |
+
"loss": 0.8982,
|
796 |
+
"step": 53
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 1.65625,
|
800 |
+
"eval_loss": 0.8064478039741516,
|
801 |
+
"eval_runtime": 57.4343,
|
802 |
+
"eval_samples_per_second": 3.482,
|
803 |
+
"eval_steps_per_second": 0.435,
|
804 |
+
"step": 53
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 1.6875,
|
808 |
+
"grad_norm": 0.2831937064873763,
|
809 |
+
"learning_rate": 2e-05,
|
810 |
+
"loss": 0.8781,
|
811 |
+
"step": 54
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 1.6875,
|
815 |
+
"eval_loss": 0.8034397959709167,
|
816 |
+
"eval_runtime": 56.8346,
|
817 |
+
"eval_samples_per_second": 3.519,
|
818 |
+
"eval_steps_per_second": 0.44,
|
819 |
+
"step": 54
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.71875,
|
823 |
+
"grad_norm": 0.2863024186152095,
|
824 |
+
"learning_rate": 2e-05,
|
825 |
+
"loss": 0.8861,
|
826 |
+
"step": 55
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.71875,
|
830 |
+
"eval_loss": 0.800960898399353,
|
831 |
+
"eval_runtime": 56.7424,
|
832 |
+
"eval_samples_per_second": 3.525,
|
833 |
+
"eval_steps_per_second": 0.441,
|
834 |
+
"step": 55
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 1.75,
|
838 |
+
"grad_norm": 0.28320211213029406,
|
839 |
+
"learning_rate": 2e-05,
|
840 |
+
"loss": 0.9514,
|
841 |
+
"step": 56
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 1.75,
|
845 |
+
"eval_loss": 0.7988448143005371,
|
846 |
+
"eval_runtime": 57.0405,
|
847 |
+
"eval_samples_per_second": 3.506,
|
848 |
+
"eval_steps_per_second": 0.438,
|
849 |
+
"step": 56
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.78125,
|
853 |
+
"grad_norm": 0.3204132014824286,
|
854 |
+
"learning_rate": 2e-05,
|
855 |
+
"loss": 0.8947,
|
856 |
+
"step": 57
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.78125,
|
860 |
+
"eval_loss": 0.7971951365470886,
|
861 |
+
"eval_runtime": 57.1716,
|
862 |
+
"eval_samples_per_second": 3.498,
|
863 |
+
"eval_steps_per_second": 0.437,
|
864 |
+
"step": 57
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 1.8125,
|
868 |
+
"grad_norm": 0.29386668880511096,
|
869 |
+
"learning_rate": 2e-05,
|
870 |
+
"loss": 0.9125,
|
871 |
+
"step": 58
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 1.8125,
|
875 |
+
"eval_loss": 0.7956165075302124,
|
876 |
+
"eval_runtime": 57.3457,
|
877 |
+
"eval_samples_per_second": 3.488,
|
878 |
+
"eval_steps_per_second": 0.436,
|
879 |
+
"step": 58
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.84375,
|
883 |
+
"grad_norm": 0.31091076146467406,
|
884 |
+
"learning_rate": 2e-05,
|
885 |
+
"loss": 0.8638,
|
886 |
+
"step": 59
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 1.84375,
|
890 |
+
"eval_loss": 0.7935267090797424,
|
891 |
+
"eval_runtime": 57.373,
|
892 |
+
"eval_samples_per_second": 3.486,
|
893 |
+
"eval_steps_per_second": 0.436,
|
894 |
+
"step": 59
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 1.875,
|
898 |
+
"grad_norm": 0.28779917523565474,
|
899 |
+
"learning_rate": 2e-05,
|
900 |
+
"loss": 0.9113,
|
901 |
+
"step": 60
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.875,
|
905 |
+
"eval_loss": 0.7914787530899048,
|
906 |
+
"eval_runtime": 57.2668,
|
907 |
+
"eval_samples_per_second": 3.492,
|
908 |
+
"eval_steps_per_second": 0.437,
|
909 |
+
"step": 60
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.90625,
|
913 |
+
"grad_norm": 0.31820258275619673,
|
914 |
+
"learning_rate": 2e-05,
|
915 |
+
"loss": 0.8113,
|
916 |
+
"step": 61
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 1.90625,
|
920 |
+
"eval_loss": 0.788929283618927,
|
921 |
+
"eval_runtime": 57.2581,
|
922 |
+
"eval_samples_per_second": 3.493,
|
923 |
+
"eval_steps_per_second": 0.437,
|
924 |
+
"step": 61
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 1.9375,
|
928 |
+
"grad_norm": 0.30186200117869055,
|
929 |
+
"learning_rate": 2e-05,
|
930 |
+
"loss": 0.8685,
|
931 |
+
"step": 62
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 1.9375,
|
935 |
+
"eval_loss": 0.7862411737442017,
|
936 |
+
"eval_runtime": 57.2688,
|
937 |
+
"eval_samples_per_second": 3.492,
|
938 |
+
"eval_steps_per_second": 0.437,
|
939 |
+
"step": 62
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.96875,
|
943 |
+
"grad_norm": 0.27549296702686904,
|
944 |
+
"learning_rate": 2e-05,
|
945 |
+
"loss": 0.911,
|
946 |
+
"step": 63
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.96875,
|
950 |
+
"eval_loss": 0.7838772535324097,
|
951 |
+
"eval_runtime": 57.5102,
|
952 |
+
"eval_samples_per_second": 3.478,
|
953 |
+
"eval_steps_per_second": 0.435,
|
954 |
+
"step": 63
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.0,
|
958 |
+
"grad_norm": 0.29444542350221403,
|
959 |
+
"learning_rate": 2e-05,
|
960 |
+
"loss": 0.8877,
|
961 |
+
"step": 64
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.0,
|
965 |
+
"eval_loss": 0.7814672589302063,
|
966 |
+
"eval_runtime": 57.3342,
|
967 |
+
"eval_samples_per_second": 3.488,
|
968 |
+
"eval_steps_per_second": 0.436,
|
969 |
+
"step": 64
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 2.03125,
|
973 |
+
"grad_norm": 0.32976362380066954,
|
974 |
+
"learning_rate": 2e-05,
|
975 |
+
"loss": 0.836,
|
976 |
+
"step": 65
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 2.03125,
|
980 |
+
"eval_loss": 0.7788661122322083,
|
981 |
+
"eval_runtime": 57.6392,
|
982 |
+
"eval_samples_per_second": 3.47,
|
983 |
+
"eval_steps_per_second": 0.434,
|
984 |
+
"step": 65
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 2.0625,
|
988 |
+
"grad_norm": 0.3091109685624876,
|
989 |
+
"learning_rate": 2e-05,
|
990 |
+
"loss": 0.8565,
|
991 |
+
"step": 66
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 2.0625,
|
995 |
+
"eval_loss": 0.7769085764884949,
|
996 |
+
"eval_runtime": 57.2017,
|
997 |
+
"eval_samples_per_second": 3.496,
|
998 |
+
"eval_steps_per_second": 0.437,
|
999 |
+
"step": 66
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.09375,
|
1003 |
+
"grad_norm": 0.3011651623444141,
|
1004 |
+
"learning_rate": 2e-05,
|
1005 |
+
"loss": 0.8265,
|
1006 |
+
"step": 67
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 2.09375,
|
1010 |
+
"eval_loss": 0.7751161456108093,
|
1011 |
+
"eval_runtime": 57.4125,
|
1012 |
+
"eval_samples_per_second": 3.484,
|
1013 |
+
"eval_steps_per_second": 0.435,
|
1014 |
+
"step": 67
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 2.125,
|
1018 |
+
"grad_norm": 0.28278958612422994,
|
1019 |
+
"learning_rate": 2e-05,
|
1020 |
+
"loss": 0.8893,
|
1021 |
+
"step": 68
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 2.125,
|
1025 |
+
"eval_loss": 0.7736042737960815,
|
1026 |
+
"eval_runtime": 57.2826,
|
1027 |
+
"eval_samples_per_second": 3.491,
|
1028 |
+
"eval_steps_per_second": 0.436,
|
1029 |
+
"step": 68
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.15625,
|
1033 |
+
"grad_norm": 0.30212533045014006,
|
1034 |
+
"learning_rate": 2e-05,
|
1035 |
+
"loss": 0.8256,
|
1036 |
+
"step": 69
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 2.15625,
|
1040 |
+
"eval_loss": 0.7718043327331543,
|
1041 |
+
"eval_runtime": 59.4842,
|
1042 |
+
"eval_samples_per_second": 3.362,
|
1043 |
+
"eval_steps_per_second": 0.42,
|
1044 |
+
"step": 69
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 2.1875,
|
1048 |
+
"grad_norm": 0.32231592883907934,
|
1049 |
+
"learning_rate": 2e-05,
|
1050 |
+
"loss": 0.7754,
|
1051 |
+
"step": 70
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 2.1875,
|
1055 |
+
"eval_loss": 0.7697712779045105,
|
1056 |
+
"eval_runtime": 57.2127,
|
1057 |
+
"eval_samples_per_second": 3.496,
|
1058 |
+
"eval_steps_per_second": 0.437,
|
1059 |
+
"step": 70
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.21875,
|
1063 |
+
"grad_norm": 0.29880148326318595,
|
1064 |
+
"learning_rate": 2e-05,
|
1065 |
+
"loss": 0.864,
|
1066 |
+
"step": 71
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.21875,
|
1070 |
+
"eval_loss": 0.7679712176322937,
|
1071 |
+
"eval_runtime": 57.1052,
|
1072 |
+
"eval_samples_per_second": 3.502,
|
1073 |
+
"eval_steps_per_second": 0.438,
|
1074 |
+
"step": 71
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 2.25,
|
1078 |
+
"grad_norm": 0.30389759178870646,
|
1079 |
+
"learning_rate": 2e-05,
|
1080 |
+
"loss": 0.7831,
|
1081 |
+
"step": 72
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 2.25,
|
1085 |
+
"eval_loss": 0.7662644386291504,
|
1086 |
+
"eval_runtime": 57.37,
|
1087 |
+
"eval_samples_per_second": 3.486,
|
1088 |
+
"eval_steps_per_second": 0.436,
|
1089 |
+
"step": 72
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 2.28125,
|
1093 |
+
"grad_norm": 0.3424258847516451,
|
1094 |
+
"learning_rate": 2e-05,
|
1095 |
+
"loss": 0.8311,
|
1096 |
+
"step": 73
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 2.28125,
|
1100 |
+
"eval_loss": 0.7646127343177795,
|
1101 |
+
"eval_runtime": 57.1884,
|
1102 |
+
"eval_samples_per_second": 3.497,
|
1103 |
+
"eval_steps_per_second": 0.437,
|
1104 |
+
"step": 73
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 2.3125,
|
1108 |
+
"grad_norm": 0.2831654885374943,
|
1109 |
+
"learning_rate": 2e-05,
|
1110 |
+
"loss": 0.8261,
|
1111 |
+
"step": 74
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 2.3125,
|
1115 |
+
"eval_loss": 0.7631255388259888,
|
1116 |
+
"eval_runtime": 57.4573,
|
1117 |
+
"eval_samples_per_second": 3.481,
|
1118 |
+
"eval_steps_per_second": 0.435,
|
1119 |
+
"step": 74
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 2.34375,
|
1123 |
+
"grad_norm": 0.29894569677081223,
|
1124 |
+
"learning_rate": 2e-05,
|
1125 |
+
"loss": 0.8801,
|
1126 |
+
"step": 75
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"epoch": 2.34375,
|
1130 |
+
"eval_loss": 0.7617875933647156,
|
1131 |
+
"eval_runtime": 57.1641,
|
1132 |
+
"eval_samples_per_second": 3.499,
|
1133 |
+
"eval_steps_per_second": 0.437,
|
1134 |
+
"step": 75
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 2.375,
|
1138 |
+
"grad_norm": 0.3030991848050202,
|
1139 |
+
"learning_rate": 2e-05,
|
1140 |
+
"loss": 0.7921,
|
1141 |
+
"step": 76
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 2.375,
|
1145 |
+
"eval_loss": 0.7605040073394775,
|
1146 |
+
"eval_runtime": 57.0991,
|
1147 |
+
"eval_samples_per_second": 3.503,
|
1148 |
+
"eval_steps_per_second": 0.438,
|
1149 |
+
"step": 76
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 2.40625,
|
1153 |
+
"grad_norm": 0.30216971620226146,
|
1154 |
+
"learning_rate": 2e-05,
|
1155 |
+
"loss": 0.8527,
|
1156 |
+
"step": 77
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 2.40625,
|
1160 |
+
"eval_loss": 0.7591890096664429,
|
1161 |
+
"eval_runtime": 58.6087,
|
1162 |
+
"eval_samples_per_second": 3.412,
|
1163 |
+
"eval_steps_per_second": 0.427,
|
1164 |
+
"step": 77
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.4375,
|
1168 |
+
"grad_norm": 0.34907486616204614,
|
1169 |
+
"learning_rate": 2e-05,
|
1170 |
+
"loss": 0.841,
|
1171 |
+
"step": 78
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.4375,
|
1175 |
+
"eval_loss": 0.7577351331710815,
|
1176 |
+
"eval_runtime": 59.509,
|
1177 |
+
"eval_samples_per_second": 3.361,
|
1178 |
+
"eval_steps_per_second": 0.42,
|
1179 |
+
"step": 78
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 2.46875,
|
1183 |
+
"grad_norm": 0.3356288667630128,
|
1184 |
+
"learning_rate": 2e-05,
|
1185 |
+
"loss": 0.8417,
|
1186 |
+
"step": 79
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 2.46875,
|
1190 |
+
"eval_loss": 0.7571098208427429,
|
1191 |
+
"eval_runtime": 57.4972,
|
1192 |
+
"eval_samples_per_second": 3.478,
|
1193 |
+
"eval_steps_per_second": 0.435,
|
1194 |
+
"step": 79
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 2.5,
|
1198 |
+
"grad_norm": 0.3547770718977253,
|
1199 |
+
"learning_rate": 2e-05,
|
1200 |
+
"loss": 0.8865,
|
1201 |
+
"step": 80
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 2.5,
|
1205 |
+
"eval_loss": 0.7565757632255554,
|
1206 |
+
"eval_runtime": 57.4262,
|
1207 |
+
"eval_samples_per_second": 3.483,
|
1208 |
+
"eval_steps_per_second": 0.435,
|
1209 |
+
"step": 80
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 2.53125,
|
1213 |
+
"grad_norm": 0.36400071548952273,
|
1214 |
+
"learning_rate": 2e-05,
|
1215 |
+
"loss": 0.8201,
|
1216 |
+
"step": 81
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 2.53125,
|
1220 |
+
"eval_loss": 0.7553688287734985,
|
1221 |
+
"eval_runtime": 59.6772,
|
1222 |
+
"eval_samples_per_second": 3.351,
|
1223 |
+
"eval_steps_per_second": 0.419,
|
1224 |
+
"step": 81
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 2.5625,
|
1228 |
+
"grad_norm": 0.32432854183732784,
|
1229 |
+
"learning_rate": 2e-05,
|
1230 |
+
"loss": 0.8705,
|
1231 |
+
"step": 82
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 2.5625,
|
1235 |
+
"eval_loss": 0.7540337443351746,
|
1236 |
+
"eval_runtime": 58.1967,
|
1237 |
+
"eval_samples_per_second": 3.437,
|
1238 |
+
"eval_steps_per_second": 0.43,
|
1239 |
+
"step": 82
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 2.59375,
|
1243 |
+
"grad_norm": 0.3367161155473714,
|
1244 |
+
"learning_rate": 2e-05,
|
1245 |
+
"loss": 0.8225,
|
1246 |
+
"step": 83
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 2.59375,
|
1250 |
+
"eval_loss": 0.752601683139801,
|
1251 |
+
"eval_runtime": 59.728,
|
1252 |
+
"eval_samples_per_second": 3.349,
|
1253 |
+
"eval_steps_per_second": 0.419,
|
1254 |
+
"step": 83
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 2.625,
|
1258 |
+
"grad_norm": 0.3542073894911913,
|
1259 |
+
"learning_rate": 2e-05,
|
1260 |
+
"loss": 0.7887,
|
1261 |
+
"step": 84
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 2.625,
|
1265 |
+
"eval_loss": 0.750983715057373,
|
1266 |
+
"eval_runtime": 58.2468,
|
1267 |
+
"eval_samples_per_second": 3.434,
|
1268 |
+
"eval_steps_per_second": 0.429,
|
1269 |
+
"step": 84
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.65625,
|
1273 |
+
"grad_norm": 0.3387577198880303,
|
1274 |
+
"learning_rate": 2e-05,
|
1275 |
+
"loss": 0.7594,
|
1276 |
+
"step": 85
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.65625,
|
1280 |
+
"eval_loss": 0.7495383620262146,
|
1281 |
+
"eval_runtime": 58.3457,
|
1282 |
+
"eval_samples_per_second": 3.428,
|
1283 |
+
"eval_steps_per_second": 0.428,
|
1284 |
+
"step": 85
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 2.6875,
|
1288 |
+
"grad_norm": 0.381221735797731,
|
1289 |
+
"learning_rate": 2e-05,
|
1290 |
+
"loss": 0.7911,
|
1291 |
+
"step": 86
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 2.6875,
|
1295 |
+
"eval_loss": 0.7477438449859619,
|
1296 |
+
"eval_runtime": 58.0584,
|
1297 |
+
"eval_samples_per_second": 3.445,
|
1298 |
+
"eval_steps_per_second": 0.431,
|
1299 |
+
"step": 86
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 2.71875,
|
1303 |
+
"grad_norm": 0.3782280426863171,
|
1304 |
+
"learning_rate": 2e-05,
|
1305 |
+
"loss": 0.8115,
|
1306 |
+
"step": 87
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 2.71875,
|
1310 |
+
"eval_loss": 0.7464295029640198,
|
1311 |
+
"eval_runtime": 57.9835,
|
1312 |
+
"eval_samples_per_second": 3.449,
|
1313 |
+
"eval_steps_per_second": 0.431,
|
1314 |
+
"step": 87
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 2.75,
|
1318 |
+
"grad_norm": 0.3751127153118298,
|
1319 |
+
"learning_rate": 2e-05,
|
1320 |
+
"loss": 0.8896,
|
1321 |
+
"step": 88
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 2.75,
|
1325 |
+
"eval_loss": 0.7451103329658508,
|
1326 |
+
"eval_runtime": 58.1947,
|
1327 |
+
"eval_samples_per_second": 3.437,
|
1328 |
+
"eval_steps_per_second": 0.43,
|
1329 |
+
"step": 88
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 2.78125,
|
1333 |
+
"grad_norm": 0.3580034870691801,
|
1334 |
+
"learning_rate": 2e-05,
|
1335 |
+
"loss": 0.7964,
|
1336 |
+
"step": 89
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 2.78125,
|
1340 |
+
"eval_loss": 0.744097113609314,
|
1341 |
+
"eval_runtime": 58.1644,
|
1342 |
+
"eval_samples_per_second": 3.439,
|
1343 |
+
"eval_steps_per_second": 0.43,
|
1344 |
+
"step": 89
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 2.8125,
|
1348 |
+
"grad_norm": 0.3630926811819107,
|
1349 |
+
"learning_rate": 2e-05,
|
1350 |
+
"loss": 0.848,
|
1351 |
+
"step": 90
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 2.8125,
|
1355 |
+
"eval_loss": 0.7432359457015991,
|
1356 |
+
"eval_runtime": 58.0811,
|
1357 |
+
"eval_samples_per_second": 3.443,
|
1358 |
+
"eval_steps_per_second": 0.43,
|
1359 |
+
"step": 90
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 2.84375,
|
1363 |
+
"grad_norm": 0.3668484035124972,
|
1364 |
+
"learning_rate": 2e-05,
|
1365 |
+
"loss": 0.7444,
|
1366 |
+
"step": 91
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"epoch": 2.84375,
|
1370 |
+
"eval_loss": 0.7424789667129517,
|
1371 |
+
"eval_runtime": 59.6811,
|
1372 |
+
"eval_samples_per_second": 3.351,
|
1373 |
+
"eval_steps_per_second": 0.419,
|
1374 |
+
"step": 91
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.875,
|
1378 |
+
"grad_norm": 0.37526030248163283,
|
1379 |
+
"learning_rate": 2e-05,
|
1380 |
+
"loss": 0.8381,
|
1381 |
+
"step": 92
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.875,
|
1385 |
+
"eval_loss": 0.7417113780975342,
|
1386 |
+
"eval_runtime": 58.1209,
|
1387 |
+
"eval_samples_per_second": 3.441,
|
1388 |
+
"eval_steps_per_second": 0.43,
|
1389 |
+
"step": 92
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 2.90625,
|
1393 |
+
"grad_norm": 0.36285898832422037,
|
1394 |
+
"learning_rate": 2e-05,
|
1395 |
+
"loss": 0.7797,
|
1396 |
+
"step": 93
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 2.90625,
|
1400 |
+
"eval_loss": 0.7411203980445862,
|
1401 |
+
"eval_runtime": 58.3212,
|
1402 |
+
"eval_samples_per_second": 3.429,
|
1403 |
+
"eval_steps_per_second": 0.429,
|
1404 |
+
"step": 93
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 2.9375,
|
1408 |
+
"grad_norm": 0.39983168875602654,
|
1409 |
+
"learning_rate": 2e-05,
|
1410 |
+
"loss": 0.8571,
|
1411 |
+
"step": 94
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 2.9375,
|
1415 |
+
"eval_loss": 0.7402496933937073,
|
1416 |
+
"eval_runtime": 58.0746,
|
1417 |
+
"eval_samples_per_second": 3.444,
|
1418 |
+
"eval_steps_per_second": 0.43,
|
1419 |
+
"step": 94
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 2.96875,
|
1423 |
+
"grad_norm": 0.3697896026052261,
|
1424 |
+
"learning_rate": 2e-05,
|
1425 |
+
"loss": 0.7917,
|
1426 |
+
"step": 95
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 2.96875,
|
1430 |
+
"eval_loss": 0.7398749589920044,
|
1431 |
+
"eval_runtime": 59.8008,
|
1432 |
+
"eval_samples_per_second": 3.344,
|
1433 |
+
"eval_steps_per_second": 0.418,
|
1434 |
+
"step": 95
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 3.0,
|
1438 |
+
"grad_norm": 0.39419135002625816,
|
1439 |
+
"learning_rate": 2e-05,
|
1440 |
+
"loss": 0.7987,
|
1441 |
+
"step": 96
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 3.0,
|
1445 |
+
"eval_loss": 0.7384353876113892,
|
1446 |
+
"eval_runtime": 58.3389,
|
1447 |
+
"eval_samples_per_second": 3.428,
|
1448 |
+
"eval_steps_per_second": 0.429,
|
1449 |
+
"step": 96
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 3.03125,
|
1453 |
+
"grad_norm": 0.40732207424611727,
|
1454 |
+
"learning_rate": 2e-05,
|
1455 |
+
"loss": 0.7205,
|
1456 |
+
"step": 97
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 3.03125,
|
1460 |
+
"eval_loss": 0.73604416847229,
|
1461 |
+
"eval_runtime": 58.2114,
|
1462 |
+
"eval_samples_per_second": 3.436,
|
1463 |
+
"eval_steps_per_second": 0.429,
|
1464 |
+
"step": 97
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 3.0625,
|
1468 |
+
"grad_norm": 0.3641635271623762,
|
1469 |
+
"learning_rate": 2e-05,
|
1470 |
+
"loss": 0.8062,
|
1471 |
+
"step": 98
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 3.0625,
|
1475 |
+
"eval_loss": 0.7333144545555115,
|
1476 |
+
"eval_runtime": 59.7484,
|
1477 |
+
"eval_samples_per_second": 3.347,
|
1478 |
+
"eval_steps_per_second": 0.418,
|
1479 |
+
"step": 98
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 3.09375,
|
1483 |
+
"grad_norm": 0.3556866449584765,
|
1484 |
+
"learning_rate": 2e-05,
|
1485 |
+
"loss": 0.7681,
|
1486 |
+
"step": 99
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 3.09375,
|
1490 |
+
"eval_loss": 0.7306910157203674,
|
1491 |
+
"eval_runtime": 58.141,
|
1492 |
+
"eval_samples_per_second": 3.44,
|
1493 |
+
"eval_steps_per_second": 0.43,
|
1494 |
+
"step": 99
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 3.125,
|
1498 |
+
"grad_norm": 0.3826129743685834,
|
1499 |
+
"learning_rate": 2e-05,
|
1500 |
+
"loss": 0.7961,
|
1501 |
+
"step": 100
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 3.125,
|
1505 |
+
"eval_loss": 0.7283279895782471,
|
1506 |
+
"eval_runtime": 58.1482,
|
1507 |
+
"eval_samples_per_second": 3.439,
|
1508 |
+
"eval_steps_per_second": 0.43,
|
1509 |
+
"step": 100
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 3.15625,
|
1513 |
+
"grad_norm": 0.35166540759020914,
|
1514 |
+
"learning_rate": 2e-05,
|
1515 |
+
"loss": 0.7382,
|
1516 |
+
"step": 101
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 3.15625,
|
1520 |
+
"eval_loss": 0.7267993688583374,
|
1521 |
+
"eval_runtime": 57.8007,
|
1522 |
+
"eval_samples_per_second": 3.46,
|
1523 |
+
"eval_steps_per_second": 0.433,
|
1524 |
+
"step": 101
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 3.1875,
|
1528 |
+
"grad_norm": 0.38414476136018477,
|
1529 |
+
"learning_rate": 2e-05,
|
1530 |
+
"loss": 0.7999,
|
1531 |
+
"step": 102
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 3.1875,
|
1535 |
+
"eval_loss": 0.7261015176773071,
|
1536 |
+
"eval_runtime": 57.9723,
|
1537 |
+
"eval_samples_per_second": 3.45,
|
1538 |
+
"eval_steps_per_second": 0.431,
|
1539 |
+
"step": 102
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 3.21875,
|
1543 |
+
"grad_norm": 0.40218377868187477,
|
1544 |
+
"learning_rate": 2e-05,
|
1545 |
+
"loss": 0.8115,
|
1546 |
+
"step": 103
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 3.21875,
|
1550 |
+
"eval_loss": 0.7257917523384094,
|
1551 |
+
"eval_runtime": 58.0394,
|
1552 |
+
"eval_samples_per_second": 3.446,
|
1553 |
+
"eval_steps_per_second": 0.431,
|
1554 |
+
"step": 103
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 3.25,
|
1558 |
+
"grad_norm": 0.41934721904445194,
|
1559 |
+
"learning_rate": 2e-05,
|
1560 |
+
"loss": 0.7228,
|
1561 |
+
"step": 104
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 3.25,
|
1565 |
+
"eval_loss": 0.7251278758049011,
|
1566 |
+
"eval_runtime": 59.2828,
|
1567 |
+
"eval_samples_per_second": 3.374,
|
1568 |
+
"eval_steps_per_second": 0.422,
|
1569 |
+
"step": 104
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 3.28125,
|
1573 |
+
"grad_norm": 0.3882012129329853,
|
1574 |
+
"learning_rate": 2e-05,
|
1575 |
+
"loss": 0.7658,
|
1576 |
+
"step": 105
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 3.28125,
|
1580 |
+
"eval_loss": 0.724635899066925,
|
1581 |
+
"eval_runtime": 59.0543,
|
1582 |
+
"eval_samples_per_second": 3.387,
|
1583 |
+
"eval_steps_per_second": 0.423,
|
1584 |
+
"step": 105
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 3.3125,
|
1588 |
+
"grad_norm": 0.4068559748805906,
|
1589 |
+
"learning_rate": 2e-05,
|
1590 |
+
"loss": 0.7977,
|
1591 |
+
"step": 106
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 3.3125,
|
1595 |
+
"eval_loss": 0.7242235541343689,
|
1596 |
+
"eval_runtime": 58.5527,
|
1597 |
+
"eval_samples_per_second": 3.416,
|
1598 |
+
"eval_steps_per_second": 0.427,
|
1599 |
+
"step": 106
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 3.34375,
|
1603 |
+
"grad_norm": 0.4620335365938039,
|
1604 |
+
"learning_rate": 2e-05,
|
1605 |
+
"loss": 0.7015,
|
1606 |
+
"step": 107
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 3.34375,
|
1610 |
+
"eval_loss": 0.7226566076278687,
|
1611 |
+
"eval_runtime": 58.8135,
|
1612 |
+
"eval_samples_per_second": 3.401,
|
1613 |
+
"eval_steps_per_second": 0.425,
|
1614 |
+
"step": 107
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 3.375,
|
1618 |
+
"grad_norm": 0.4009314815042761,
|
1619 |
+
"learning_rate": 2e-05,
|
1620 |
+
"loss": 0.7488,
|
1621 |
+
"step": 108
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 3.375,
|
1625 |
+
"eval_loss": 0.7213454246520996,
|
1626 |
+
"eval_runtime": 58.735,
|
1627 |
+
"eval_samples_per_second": 3.405,
|
1628 |
+
"eval_steps_per_second": 0.426,
|
1629 |
+
"step": 108
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 3.40625,
|
1633 |
+
"grad_norm": 0.456822567760836,
|
1634 |
+
"learning_rate": 2e-05,
|
1635 |
+
"loss": 0.7307,
|
1636 |
+
"step": 109
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 3.40625,
|
1640 |
+
"eval_loss": 0.719496488571167,
|
1641 |
+
"eval_runtime": 58.9211,
|
1642 |
+
"eval_samples_per_second": 3.394,
|
1643 |
+
"eval_steps_per_second": 0.424,
|
1644 |
+
"step": 109
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 3.4375,
|
1648 |
+
"grad_norm": 0.45520197938839,
|
1649 |
+
"learning_rate": 2e-05,
|
1650 |
+
"loss": 0.7348,
|
1651 |
+
"step": 110
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 3.4375,
|
1655 |
+
"eval_loss": 0.7171263098716736,
|
1656 |
+
"eval_runtime": 58.9274,
|
1657 |
+
"eval_samples_per_second": 3.394,
|
1658 |
+
"eval_steps_per_second": 0.424,
|
1659 |
+
"step": 110
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 3.46875,
|
1663 |
+
"grad_norm": 0.4421606621837213,
|
1664 |
+
"learning_rate": 2e-05,
|
1665 |
+
"loss": 0.8011,
|
1666 |
+
"step": 111
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 3.46875,
|
1670 |
+
"eval_loss": 0.7155402898788452,
|
1671 |
+
"eval_runtime": 58.4009,
|
1672 |
+
"eval_samples_per_second": 3.425,
|
1673 |
+
"eval_steps_per_second": 0.428,
|
1674 |
+
"step": 111
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 3.5,
|
1678 |
+
"grad_norm": 0.4111011701354251,
|
1679 |
+
"learning_rate": 2e-05,
|
1680 |
+
"loss": 0.7829,
|
1681 |
+
"step": 112
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 3.5,
|
1685 |
+
"eval_loss": 0.714958667755127,
|
1686 |
+
"eval_runtime": 58.3143,
|
1687 |
+
"eval_samples_per_second": 3.43,
|
1688 |
+
"eval_steps_per_second": 0.429,
|
1689 |
+
"step": 112
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.53125,
|
1693 |
+
"grad_norm": 0.40366265866888357,
|
1694 |
+
"learning_rate": 2e-05,
|
1695 |
+
"loss": 0.8596,
|
1696 |
+
"step": 113
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.53125,
|
1700 |
+
"eval_loss": 0.7153159976005554,
|
1701 |
+
"eval_runtime": 58.5749,
|
1702 |
+
"eval_samples_per_second": 3.414,
|
1703 |
+
"eval_steps_per_second": 0.427,
|
1704 |
+
"step": 113
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 3.5625,
|
1708 |
+
"grad_norm": 0.44914251592864773,
|
1709 |
+
"learning_rate": 2e-05,
|
1710 |
+
"loss": 0.7268,
|
1711 |
+
"step": 114
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 3.5625,
|
1715 |
+
"eval_loss": 0.7159590721130371,
|
1716 |
+
"eval_runtime": 58.6872,
|
1717 |
+
"eval_samples_per_second": 3.408,
|
1718 |
+
"eval_steps_per_second": 0.426,
|
1719 |
+
"step": 114
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 3.59375,
|
1723 |
+
"grad_norm": 0.4062399312752312,
|
1724 |
+
"learning_rate": 2e-05,
|
1725 |
+
"loss": 0.7875,
|
1726 |
+
"step": 115
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 3.59375,
|
1730 |
+
"eval_loss": 0.7165355086326599,
|
1731 |
+
"eval_runtime": 58.4703,
|
1732 |
+
"eval_samples_per_second": 3.421,
|
1733 |
+
"eval_steps_per_second": 0.428,
|
1734 |
+
"step": 115
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 3.625,
|
1738 |
+
"grad_norm": 0.44817350106485787,
|
1739 |
+
"learning_rate": 2e-05,
|
1740 |
+
"loss": 0.7623,
|
1741 |
+
"step": 116
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 3.625,
|
1745 |
+
"eval_loss": 0.716560423374176,
|
1746 |
+
"eval_runtime": 58.5904,
|
1747 |
+
"eval_samples_per_second": 3.414,
|
1748 |
+
"eval_steps_per_second": 0.427,
|
1749 |
+
"step": 116
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 3.65625,
|
1753 |
+
"grad_norm": 0.4309671248224914,
|
1754 |
+
"learning_rate": 2e-05,
|
1755 |
+
"loss": 0.7604,
|
1756 |
+
"step": 117
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"epoch": 3.65625,
|
1760 |
+
"eval_loss": 0.7165713310241699,
|
1761 |
+
"eval_runtime": 58.5214,
|
1762 |
+
"eval_samples_per_second": 3.418,
|
1763 |
+
"eval_steps_per_second": 0.427,
|
1764 |
+
"step": 117
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 3.6875,
|
1768 |
+
"grad_norm": 0.44823929530189277,
|
1769 |
+
"learning_rate": 2e-05,
|
1770 |
+
"loss": 0.7751,
|
1771 |
+
"step": 118
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 3.6875,
|
1775 |
+
"eval_loss": 0.7170334458351135,
|
1776 |
+
"eval_runtime": 58.7428,
|
1777 |
+
"eval_samples_per_second": 3.405,
|
1778 |
+
"eval_steps_per_second": 0.426,
|
1779 |
+
"step": 118
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 3.71875,
|
1783 |
+
"grad_norm": 0.4369363559974751,
|
1784 |
+
"learning_rate": 2e-05,
|
1785 |
+
"loss": 0.8321,
|
1786 |
+
"step": 119
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 3.71875,
|
1790 |
+
"eval_loss": 0.7169127464294434,
|
1791 |
+
"eval_runtime": 58.6794,
|
1792 |
+
"eval_samples_per_second": 3.408,
|
1793 |
+
"eval_steps_per_second": 0.426,
|
1794 |
+
"step": 119
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.75,
|
1798 |
+
"grad_norm": 0.43105130939689645,
|
1799 |
+
"learning_rate": 2e-05,
|
1800 |
+
"loss": 0.7722,
|
1801 |
+
"step": 120
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.75,
|
1805 |
+
"eval_loss": 0.7162806987762451,
|
1806 |
+
"eval_runtime": 58.7674,
|
1807 |
+
"eval_samples_per_second": 3.403,
|
1808 |
+
"eval_steps_per_second": 0.425,
|
1809 |
+
"step": 120
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 3.78125,
|
1813 |
+
"grad_norm": 0.43789804607163635,
|
1814 |
+
"learning_rate": 2e-05,
|
1815 |
+
"loss": 0.7548,
|
1816 |
+
"step": 121
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 3.78125,
|
1820 |
+
"eval_loss": 0.7144981622695923,
|
1821 |
+
"eval_runtime": 58.3815,
|
1822 |
+
"eval_samples_per_second": 3.426,
|
1823 |
+
"eval_steps_per_second": 0.428,
|
1824 |
+
"step": 121
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 3.8125,
|
1828 |
+
"grad_norm": 0.46941128815266536,
|
1829 |
+
"learning_rate": 2e-05,
|
1830 |
+
"loss": 0.8189,
|
1831 |
+
"step": 122
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 3.8125,
|
1835 |
+
"eval_loss": 0.712846040725708,
|
1836 |
+
"eval_runtime": 58.5034,
|
1837 |
+
"eval_samples_per_second": 3.419,
|
1838 |
+
"eval_steps_per_second": 0.427,
|
1839 |
+
"step": 122
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 3.84375,
|
1843 |
+
"grad_norm": 0.4415453126320104,
|
1844 |
+
"learning_rate": 2e-05,
|
1845 |
+
"loss": 0.7484,
|
1846 |
+
"step": 123
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 3.84375,
|
1850 |
+
"eval_loss": 0.7111316919326782,
|
1851 |
+
"eval_runtime": 58.566,
|
1852 |
+
"eval_samples_per_second": 3.415,
|
1853 |
+
"eval_steps_per_second": 0.427,
|
1854 |
+
"step": 123
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 3.875,
|
1858 |
+
"grad_norm": 0.4237981688992312,
|
1859 |
+
"learning_rate": 2e-05,
|
1860 |
+
"loss": 0.77,
|
1861 |
+
"step": 124
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 3.875,
|
1865 |
+
"eval_loss": 0.7098332047462463,
|
1866 |
+
"eval_runtime": 58.5232,
|
1867 |
+
"eval_samples_per_second": 3.417,
|
1868 |
+
"eval_steps_per_second": 0.427,
|
1869 |
+
"step": 124
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 3.90625,
|
1873 |
+
"grad_norm": 0.49069037639672286,
|
1874 |
+
"learning_rate": 2e-05,
|
1875 |
+
"loss": 0.8059,
|
1876 |
+
"step": 125
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 3.90625,
|
1880 |
+
"eval_loss": 0.7086107730865479,
|
1881 |
+
"eval_runtime": 59.8651,
|
1882 |
+
"eval_samples_per_second": 3.341,
|
1883 |
+
"eval_steps_per_second": 0.418,
|
1884 |
+
"step": 125
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 3.9375,
|
1888 |
+
"grad_norm": 0.48569295378281013,
|
1889 |
+
"learning_rate": 2e-05,
|
1890 |
+
"loss": 0.7799,
|
1891 |
+
"step": 126
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 3.9375,
|
1895 |
+
"eval_loss": 0.7077484726905823,
|
1896 |
+
"eval_runtime": 58.4449,
|
1897 |
+
"eval_samples_per_second": 3.422,
|
1898 |
+
"eval_steps_per_second": 0.428,
|
1899 |
+
"step": 126
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.96875,
|
1903 |
+
"grad_norm": 0.47224685972430797,
|
1904 |
+
"learning_rate": 2e-05,
|
1905 |
+
"loss": 0.7381,
|
1906 |
+
"step": 127
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.96875,
|
1910 |
+
"eval_loss": 0.7073386907577515,
|
1911 |
+
"eval_runtime": 58.5961,
|
1912 |
+
"eval_samples_per_second": 3.413,
|
1913 |
+
"eval_steps_per_second": 0.427,
|
1914 |
+
"step": 127
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 4.0,
|
1918 |
+
"grad_norm": 0.48833051814427636,
|
1919 |
+
"learning_rate": 2e-05,
|
1920 |
+
"loss": 0.678,
|
1921 |
+
"step": 128
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 4.0,
|
1925 |
+
"eval_loss": 0.706765353679657,
|
1926 |
+
"eval_runtime": 60.6877,
|
1927 |
+
"eval_samples_per_second": 3.296,
|
1928 |
+
"eval_steps_per_second": 0.412,
|
1929 |
+
"step": 128
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 4.03125,
|
1933 |
+
"grad_norm": 0.4116173650136014,
|
1934 |
+
"learning_rate": 2e-05,
|
1935 |
+
"loss": 0.7582,
|
1936 |
+
"step": 129
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 4.03125,
|
1940 |
+
"eval_loss": 0.7067686319351196,
|
1941 |
+
"eval_runtime": 58.4349,
|
1942 |
+
"eval_samples_per_second": 3.423,
|
1943 |
+
"eval_steps_per_second": 0.428,
|
1944 |
+
"step": 129
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 4.0625,
|
1948 |
+
"grad_norm": 0.46176556383782513,
|
1949 |
+
"learning_rate": 2e-05,
|
1950 |
+
"loss": 0.7749,
|
1951 |
+
"step": 130
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 4.0625,
|
1955 |
+
"eval_loss": 0.7066690325737,
|
1956 |
+
"eval_runtime": 58.7029,
|
1957 |
+
"eval_samples_per_second": 3.407,
|
1958 |
+
"eval_steps_per_second": 0.426,
|
1959 |
+
"step": 130
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 4.09375,
|
1963 |
+
"grad_norm": 0.4454696779432102,
|
1964 |
+
"learning_rate": 2e-05,
|
1965 |
+
"loss": 0.773,
|
1966 |
+
"step": 131
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 4.09375,
|
1970 |
+
"eval_loss": 0.7064326405525208,
|
1971 |
+
"eval_runtime": 61.252,
|
1972 |
+
"eval_samples_per_second": 3.265,
|
1973 |
+
"eval_steps_per_second": 0.408,
|
1974 |
+
"step": 131
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 4.125,
|
1978 |
+
"grad_norm": 0.5015422163334902,
|
1979 |
+
"learning_rate": 2e-05,
|
1980 |
+
"loss": 0.7369,
|
1981 |
+
"step": 132
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 4.125,
|
1985 |
+
"eval_loss": 0.7057382464408875,
|
1986 |
+
"eval_runtime": 59.411,
|
1987 |
+
"eval_samples_per_second": 3.366,
|
1988 |
+
"eval_steps_per_second": 0.421,
|
1989 |
+
"step": 132
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 4.15625,
|
1993 |
+
"grad_norm": 0.472373878055723,
|
1994 |
+
"learning_rate": 2e-05,
|
1995 |
+
"loss": 0.8262,
|
1996 |
+
"step": 133
|
1997 |
+
},
|
1998 |
+
{
|
1999 |
+
"epoch": 4.15625,
|
2000 |
+
"eval_loss": 0.7050846815109253,
|
2001 |
+
"eval_runtime": 59.2996,
|
2002 |
+
"eval_samples_per_second": 3.373,
|
2003 |
+
"eval_steps_per_second": 0.422,
|
2004 |
+
"step": 133
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 4.1875,
|
2008 |
+
"grad_norm": 0.5384950553698907,
|
2009 |
+
"learning_rate": 2e-05,
|
2010 |
+
"loss": 0.74,
|
2011 |
+
"step": 134
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 4.1875,
|
2015 |
+
"eval_loss": 0.7045766711235046,
|
2016 |
+
"eval_runtime": 59.2928,
|
2017 |
+
"eval_samples_per_second": 3.373,
|
2018 |
+
"eval_steps_per_second": 0.422,
|
2019 |
+
"step": 134
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 4.21875,
|
2023 |
+
"grad_norm": 0.4692662892631433,
|
2024 |
+
"learning_rate": 2e-05,
|
2025 |
+
"loss": 0.7443,
|
2026 |
+
"step": 135
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 4.21875,
|
2030 |
+
"eval_loss": 0.7045109272003174,
|
2031 |
+
"eval_runtime": 59.525,
|
2032 |
+
"eval_samples_per_second": 3.36,
|
2033 |
+
"eval_steps_per_second": 0.42,
|
2034 |
+
"step": 135
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 4.25,
|
2038 |
+
"grad_norm": 0.49707639799158876,
|
2039 |
+
"learning_rate": 2e-05,
|
2040 |
+
"loss": 0.733,
|
2041 |
+
"step": 136
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"epoch": 4.25,
|
2045 |
+
"eval_loss": 0.7047656178474426,
|
2046 |
+
"eval_runtime": 60.1718,
|
2047 |
+
"eval_samples_per_second": 3.324,
|
2048 |
+
"eval_steps_per_second": 0.415,
|
2049 |
+
"step": 136
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 4.28125,
|
2053 |
+
"grad_norm": 0.5042999858449994,
|
2054 |
+
"learning_rate": 2e-05,
|
2055 |
+
"loss": 0.7303,
|
2056 |
+
"step": 137
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 4.28125,
|
2060 |
+
"eval_loss": 0.7046284675598145,
|
2061 |
+
"eval_runtime": 60.01,
|
2062 |
+
"eval_samples_per_second": 3.333,
|
2063 |
+
"eval_steps_per_second": 0.417,
|
2064 |
+
"step": 137
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 4.3125,
|
2068 |
+
"grad_norm": 0.5236583357740581,
|
2069 |
+
"learning_rate": 2e-05,
|
2070 |
+
"loss": 0.7254,
|
2071 |
+
"step": 138
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 4.3125,
|
2075 |
+
"eval_loss": 0.7038366794586182,
|
2076 |
+
"eval_runtime": 60.3496,
|
2077 |
+
"eval_samples_per_second": 3.314,
|
2078 |
+
"eval_steps_per_second": 0.414,
|
2079 |
+
"step": 138
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 4.34375,
|
2083 |
+
"grad_norm": 0.5197559530441114,
|
2084 |
+
"learning_rate": 2e-05,
|
2085 |
+
"loss": 0.6956,
|
2086 |
+
"step": 139
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 4.34375,
|
2090 |
+
"eval_loss": 0.7023048400878906,
|
2091 |
+
"eval_runtime": 60.3808,
|
2092 |
+
"eval_samples_per_second": 3.312,
|
2093 |
+
"eval_steps_per_second": 0.414,
|
2094 |
+
"step": 139
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 4.375,
|
2098 |
+
"grad_norm": 0.5214546280852583,
|
2099 |
+
"learning_rate": 2e-05,
|
2100 |
+
"loss": 0.7243,
|
2101 |
+
"step": 140
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 4.375,
|
2105 |
+
"eval_loss": 0.7011681199073792,
|
2106 |
+
"eval_runtime": 60.1368,
|
2107 |
+
"eval_samples_per_second": 3.326,
|
2108 |
+
"eval_steps_per_second": 0.416,
|
2109 |
+
"step": 140
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 4.40625,
|
2113 |
+
"grad_norm": 0.47638616269940814,
|
2114 |
+
"learning_rate": 2e-05,
|
2115 |
+
"loss": 0.7442,
|
2116 |
+
"step": 141
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 4.40625,
|
2120 |
+
"eval_loss": 0.7005561590194702,
|
2121 |
+
"eval_runtime": 61.003,
|
2122 |
+
"eval_samples_per_second": 3.279,
|
2123 |
+
"eval_steps_per_second": 0.41,
|
2124 |
+
"step": 141
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 4.4375,
|
2128 |
+
"grad_norm": 0.5067672241908349,
|
2129 |
+
"learning_rate": 2e-05,
|
2130 |
+
"loss": 0.693,
|
2131 |
+
"step": 142
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 4.4375,
|
2135 |
+
"eval_loss": 0.7004985809326172,
|
2136 |
+
"eval_runtime": 60.1646,
|
2137 |
+
"eval_samples_per_second": 3.324,
|
2138 |
+
"eval_steps_per_second": 0.416,
|
2139 |
+
"step": 142
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 4.46875,
|
2143 |
+
"grad_norm": 0.5323088696033406,
|
2144 |
+
"learning_rate": 2e-05,
|
2145 |
+
"loss": 0.7019,
|
2146 |
+
"step": 143
|
2147 |
+
},
|
2148 |
+
{
|
2149 |
+
"epoch": 4.46875,
|
2150 |
+
"eval_loss": 0.7001196146011353,
|
2151 |
+
"eval_runtime": 59.9527,
|
2152 |
+
"eval_samples_per_second": 3.336,
|
2153 |
+
"eval_steps_per_second": 0.417,
|
2154 |
+
"step": 143
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 4.5,
|
2158 |
+
"grad_norm": 0.4994538125400832,
|
2159 |
+
"learning_rate": 2e-05,
|
2160 |
+
"loss": 0.684,
|
2161 |
+
"step": 144
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 4.5,
|
2165 |
+
"eval_loss": 0.6989223957061768,
|
2166 |
+
"eval_runtime": 59.7753,
|
2167 |
+
"eval_samples_per_second": 3.346,
|
2168 |
+
"eval_steps_per_second": 0.418,
|
2169 |
+
"step": 144
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 4.53125,
|
2173 |
+
"grad_norm": 0.5328972466603664,
|
2174 |
+
"learning_rate": 2e-05,
|
2175 |
+
"loss": 0.7581,
|
2176 |
+
"step": 145
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 4.53125,
|
2180 |
+
"eval_loss": 0.697172999382019,
|
2181 |
+
"eval_runtime": 59.678,
|
2182 |
+
"eval_samples_per_second": 3.351,
|
2183 |
+
"eval_steps_per_second": 0.419,
|
2184 |
+
"step": 145
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 4.5625,
|
2188 |
+
"grad_norm": 0.557725244530984,
|
2189 |
+
"learning_rate": 2e-05,
|
2190 |
+
"loss": 0.6562,
|
2191 |
+
"step": 146
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 4.5625,
|
2195 |
+
"eval_loss": 0.6954514980316162,
|
2196 |
+
"eval_runtime": 59.6753,
|
2197 |
+
"eval_samples_per_second": 3.351,
|
2198 |
+
"eval_steps_per_second": 0.419,
|
2199 |
+
"step": 146
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 4.59375,
|
2203 |
+
"grad_norm": 0.520999668899182,
|
2204 |
+
"learning_rate": 2e-05,
|
2205 |
+
"loss": 0.7108,
|
2206 |
+
"step": 147
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"epoch": 4.59375,
|
2210 |
+
"eval_loss": 0.6949453949928284,
|
2211 |
+
"eval_runtime": 59.7891,
|
2212 |
+
"eval_samples_per_second": 3.345,
|
2213 |
+
"eval_steps_per_second": 0.418,
|
2214 |
+
"step": 147
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 4.625,
|
2218 |
+
"grad_norm": 0.513677589761833,
|
2219 |
+
"learning_rate": 2e-05,
|
2220 |
+
"loss": 0.6697,
|
2221 |
+
"step": 148
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 4.625,
|
2225 |
+
"eval_loss": 0.6953239440917969,
|
2226 |
+
"eval_runtime": 59.7415,
|
2227 |
+
"eval_samples_per_second": 3.348,
|
2228 |
+
"eval_steps_per_second": 0.418,
|
2229 |
+
"step": 148
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 4.65625,
|
2233 |
+
"grad_norm": 0.5054488117701784,
|
2234 |
+
"learning_rate": 2e-05,
|
2235 |
+
"loss": 0.7793,
|
2236 |
+
"step": 149
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 4.65625,
|
2240 |
+
"eval_loss": 0.6959659457206726,
|
2241 |
+
"eval_runtime": 59.9711,
|
2242 |
+
"eval_samples_per_second": 3.335,
|
2243 |
+
"eval_steps_per_second": 0.417,
|
2244 |
+
"step": 149
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"epoch": 4.6875,
|
2248 |
+
"grad_norm": 0.5962123257952582,
|
2249 |
+
"learning_rate": 2e-05,
|
2250 |
+
"loss": 0.7068,
|
2251 |
+
"step": 150
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 4.6875,
|
2255 |
+
"eval_loss": 0.6952192783355713,
|
2256 |
+
"eval_runtime": 59.6824,
|
2257 |
+
"eval_samples_per_second": 3.351,
|
2258 |
+
"eval_steps_per_second": 0.419,
|
2259 |
+
"step": 150
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 4.71875,
|
2263 |
+
"grad_norm": 0.6009619303481951,
|
2264 |
+
"learning_rate": 2e-05,
|
2265 |
+
"loss": 0.7261,
|
2266 |
+
"step": 151
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 4.71875,
|
2270 |
+
"eval_loss": 0.6935360431671143,
|
2271 |
+
"eval_runtime": 59.5352,
|
2272 |
+
"eval_samples_per_second": 3.359,
|
2273 |
+
"eval_steps_per_second": 0.42,
|
2274 |
+
"step": 151
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 4.75,
|
2278 |
+
"grad_norm": 0.5670117266130251,
|
2279 |
+
"learning_rate": 2e-05,
|
2280 |
+
"loss": 0.744,
|
2281 |
+
"step": 152
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 4.75,
|
2285 |
+
"eval_loss": 0.6924968957901001,
|
2286 |
+
"eval_runtime": 61.2965,
|
2287 |
+
"eval_samples_per_second": 3.263,
|
2288 |
+
"eval_steps_per_second": 0.408,
|
2289 |
+
"step": 152
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 4.78125,
|
2293 |
+
"grad_norm": 0.5564998515626721,
|
2294 |
+
"learning_rate": 2e-05,
|
2295 |
+
"loss": 0.6982,
|
2296 |
+
"step": 153
|
2297 |
+
},
|
2298 |
+
{
|
2299 |
+
"epoch": 4.78125,
|
2300 |
+
"eval_loss": 0.6924961805343628,
|
2301 |
+
"eval_runtime": 61.2731,
|
2302 |
+
"eval_samples_per_second": 3.264,
|
2303 |
+
"eval_steps_per_second": 0.408,
|
2304 |
+
"step": 153
|
2305 |
+
},
|
2306 |
+
{
|
2307 |
+
"epoch": 4.8125,
|
2308 |
+
"grad_norm": 0.528752035989291,
|
2309 |
+
"learning_rate": 2e-05,
|
2310 |
+
"loss": 0.7109,
|
2311 |
+
"step": 154
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 4.8125,
|
2315 |
+
"eval_loss": 0.6933311223983765,
|
2316 |
+
"eval_runtime": 59.8859,
|
2317 |
+
"eval_samples_per_second": 3.34,
|
2318 |
+
"eval_steps_per_second": 0.417,
|
2319 |
+
"step": 154
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 4.84375,
|
2323 |
+
"grad_norm": 0.5868388300709311,
|
2324 |
+
"learning_rate": 2e-05,
|
2325 |
+
"loss": 0.6592,
|
2326 |
+
"step": 155
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 4.84375,
|
2330 |
+
"eval_loss": 0.6933980584144592,
|
2331 |
+
"eval_runtime": 59.9915,
|
2332 |
+
"eval_samples_per_second": 3.334,
|
2333 |
+
"eval_steps_per_second": 0.417,
|
2334 |
+
"step": 155
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 4.875,
|
2338 |
+
"grad_norm": 0.5602090329210427,
|
2339 |
+
"learning_rate": 2e-05,
|
2340 |
+
"loss": 0.7682,
|
2341 |
+
"step": 156
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 4.875,
|
2345 |
+
"eval_loss": 0.6923888921737671,
|
2346 |
+
"eval_runtime": 61.499,
|
2347 |
+
"eval_samples_per_second": 3.252,
|
2348 |
+
"eval_steps_per_second": 0.407,
|
2349 |
+
"step": 156
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 4.90625,
|
2353 |
+
"grad_norm": 0.5051330890531748,
|
2354 |
+
"learning_rate": 2e-05,
|
2355 |
+
"loss": 0.7491,
|
2356 |
+
"step": 157
|
2357 |
+
},
|
2358 |
+
{
|
2359 |
+
"epoch": 4.90625,
|
2360 |
+
"eval_loss": 0.69191575050354,
|
2361 |
+
"eval_runtime": 59.6969,
|
2362 |
+
"eval_samples_per_second": 3.35,
|
2363 |
+
"eval_steps_per_second": 0.419,
|
2364 |
+
"step": 157
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 4.9375,
|
2368 |
+
"grad_norm": 0.5377224007409029,
|
2369 |
+
"learning_rate": 2e-05,
|
2370 |
+
"loss": 0.7501,
|
2371 |
+
"step": 158
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 4.9375,
|
2375 |
+
"eval_loss": 0.69122314453125,
|
2376 |
+
"eval_runtime": 60.1345,
|
2377 |
+
"eval_samples_per_second": 3.326,
|
2378 |
+
"eval_steps_per_second": 0.416,
|
2379 |
+
"step": 158
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 4.96875,
|
2383 |
+
"grad_norm": 0.544576473903093,
|
2384 |
+
"learning_rate": 2e-05,
|
2385 |
+
"loss": 0.714,
|
2386 |
+
"step": 159
|
2387 |
+
},
|
2388 |
+
{
|
2389 |
+
"epoch": 4.96875,
|
2390 |
+
"eval_loss": 0.6905286908149719,
|
2391 |
+
"eval_runtime": 59.9667,
|
2392 |
+
"eval_samples_per_second": 3.335,
|
2393 |
+
"eval_steps_per_second": 0.417,
|
2394 |
+
"step": 159
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 5.0,
|
2398 |
+
"grad_norm": 0.5027197538560159,
|
2399 |
+
"learning_rate": 2e-05,
|
2400 |
+
"loss": 0.7181,
|
2401 |
+
"step": 160
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 5.0,
|
2405 |
+
"eval_loss": 0.6906802654266357,
|
2406 |
+
"eval_runtime": 60.0766,
|
2407 |
+
"eval_samples_per_second": 3.329,
|
2408 |
+
"eval_steps_per_second": 0.416,
|
2409 |
+
"step": 160
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 5.03125,
|
2413 |
+
"grad_norm": 0.5041535532115543,
|
2414 |
+
"learning_rate": 2e-05,
|
2415 |
+
"loss": 0.6636,
|
2416 |
+
"step": 161
|
2417 |
+
},
|
2418 |
+
{
|
2419 |
+
"epoch": 5.03125,
|
2420 |
+
"eval_loss": 0.6912646293640137,
|
2421 |
+
"eval_runtime": 63.5855,
|
2422 |
+
"eval_samples_per_second": 3.145,
|
2423 |
+
"eval_steps_per_second": 0.393,
|
2424 |
+
"step": 161
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 5.0625,
|
2428 |
+
"grad_norm": 0.5286650599348627,
|
2429 |
+
"learning_rate": 2e-05,
|
2430 |
+
"loss": 0.8107,
|
2431 |
+
"step": 162
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 5.0625,
|
2435 |
+
"eval_loss": 0.6922540068626404,
|
2436 |
+
"eval_runtime": 56.5364,
|
2437 |
+
"eval_samples_per_second": 3.538,
|
2438 |
+
"eval_steps_per_second": 0.442,
|
2439 |
+
"step": 162
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 5.09375,
|
2443 |
+
"grad_norm": 0.588785168960039,
|
2444 |
+
"learning_rate": 2e-05,
|
2445 |
+
"loss": 0.6169,
|
2446 |
+
"step": 163
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 5.09375,
|
2450 |
+
"eval_loss": 0.692643404006958,
|
2451 |
+
"eval_runtime": 56.5005,
|
2452 |
+
"eval_samples_per_second": 3.54,
|
2453 |
+
"eval_steps_per_second": 0.442,
|
2454 |
+
"step": 163
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 5.125,
|
2458 |
+
"grad_norm": 0.5752677936578872,
|
2459 |
+
"learning_rate": 2e-05,
|
2460 |
+
"loss": 0.7473,
|
2461 |
+
"step": 164
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"epoch": 5.125,
|
2465 |
+
"eval_loss": 0.6927568912506104,
|
2466 |
+
"eval_runtime": 58.5386,
|
2467 |
+
"eval_samples_per_second": 3.417,
|
2468 |
+
"eval_steps_per_second": 0.427,
|
2469 |
+
"step": 164
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 5.15625,
|
2473 |
+
"grad_norm": 0.6487162117437294,
|
2474 |
+
"learning_rate": 2e-05,
|
2475 |
+
"loss": 0.588,
|
2476 |
+
"step": 165
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 5.15625,
|
2480 |
+
"eval_loss": 0.692574143409729,
|
2481 |
+
"eval_runtime": 56.4611,
|
2482 |
+
"eval_samples_per_second": 3.542,
|
2483 |
+
"eval_steps_per_second": 0.443,
|
2484 |
+
"step": 165
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 5.1875,
|
2488 |
+
"grad_norm": 0.6353608377871973,
|
2489 |
+
"learning_rate": 2e-05,
|
2490 |
+
"loss": 0.6933,
|
2491 |
+
"step": 166
|
2492 |
+
},
|
2493 |
+
{
|
2494 |
+
"epoch": 5.1875,
|
2495 |
+
"eval_loss": 0.6932590007781982,
|
2496 |
+
"eval_runtime": 56.5989,
|
2497 |
+
"eval_samples_per_second": 3.534,
|
2498 |
+
"eval_steps_per_second": 0.442,
|
2499 |
+
"step": 166
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 5.21875,
|
2503 |
+
"grad_norm": 0.5450036592535661,
|
2504 |
+
"learning_rate": 2e-05,
|
2505 |
+
"loss": 0.7175,
|
2506 |
+
"step": 167
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 5.21875,
|
2510 |
+
"eval_loss": 0.6944625973701477,
|
2511 |
+
"eval_runtime": 56.5362,
|
2512 |
+
"eval_samples_per_second": 3.538,
|
2513 |
+
"eval_steps_per_second": 0.442,
|
2514 |
+
"step": 167
|
2515 |
+
},
|
2516 |
+
{
|
2517 |
+
"epoch": 5.25,
|
2518 |
+
"grad_norm": 0.6095734786538398,
|
2519 |
+
"learning_rate": 2e-05,
|
2520 |
+
"loss": 0.7478,
|
2521 |
+
"step": 168
|
2522 |
+
},
|
2523 |
+
{
|
2524 |
+
"epoch": 5.25,
|
2525 |
+
"eval_loss": 0.695120632648468,
|
2526 |
+
"eval_runtime": 56.465,
|
2527 |
+
"eval_samples_per_second": 3.542,
|
2528 |
+
"eval_steps_per_second": 0.443,
|
2529 |
+
"step": 168
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 5.28125,
|
2533 |
+
"grad_norm": 0.5879704367364821,
|
2534 |
+
"learning_rate": 2e-05,
|
2535 |
+
"loss": 0.674,
|
2536 |
+
"step": 169
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 5.28125,
|
2540 |
+
"eval_loss": 0.6956540942192078,
|
2541 |
+
"eval_runtime": 56.6007,
|
2542 |
+
"eval_samples_per_second": 3.534,
|
2543 |
+
"eval_steps_per_second": 0.442,
|
2544 |
+
"step": 169
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 5.3125,
|
2548 |
+
"grad_norm": 0.6595426789183463,
|
2549 |
+
"learning_rate": 2e-05,
|
2550 |
+
"loss": 0.6536,
|
2551 |
+
"step": 170
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 5.3125,
|
2555 |
+
"eval_loss": 0.6957553029060364,
|
2556 |
+
"eval_runtime": 56.4722,
|
2557 |
+
"eval_samples_per_second": 3.542,
|
2558 |
+
"eval_steps_per_second": 0.443,
|
2559 |
+
"step": 170
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 5.34375,
|
2563 |
+
"grad_norm": 0.7708120772721636,
|
2564 |
+
"learning_rate": 2e-05,
|
2565 |
+
"loss": 0.666,
|
2566 |
+
"step": 171
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"epoch": 5.34375,
|
2570 |
+
"eval_loss": 0.693030834197998,
|
2571 |
+
"eval_runtime": 56.3518,
|
2572 |
+
"eval_samples_per_second": 3.549,
|
2573 |
+
"eval_steps_per_second": 0.444,
|
2574 |
+
"step": 171
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 5.375,
|
2578 |
+
"grad_norm": 0.666091377671071,
|
2579 |
+
"learning_rate": 2e-05,
|
2580 |
+
"loss": 0.7422,
|
2581 |
+
"step": 172
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 5.375,
|
2585 |
+
"eval_loss": 0.6900334358215332,
|
2586 |
+
"eval_runtime": 56.5395,
|
2587 |
+
"eval_samples_per_second": 3.537,
|
2588 |
+
"eval_steps_per_second": 0.442,
|
2589 |
+
"step": 172
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 5.40625,
|
2593 |
+
"grad_norm": 0.6203365868953359,
|
2594 |
+
"learning_rate": 2e-05,
|
2595 |
+
"loss": 0.7069,
|
2596 |
+
"step": 173
|
2597 |
+
},
|
2598 |
+
{
|
2599 |
+
"epoch": 5.40625,
|
2600 |
+
"eval_loss": 0.6880744099617004,
|
2601 |
+
"eval_runtime": 56.4675,
|
2602 |
+
"eval_samples_per_second": 3.542,
|
2603 |
+
"eval_steps_per_second": 0.443,
|
2604 |
+
"step": 173
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"epoch": 5.4375,
|
2608 |
+
"grad_norm": 0.6299525495855296,
|
2609 |
+
"learning_rate": 2e-05,
|
2610 |
+
"loss": 0.7422,
|
2611 |
+
"step": 174
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 5.4375,
|
2615 |
+
"eval_loss": 0.686725378036499,
|
2616 |
+
"eval_runtime": 56.671,
|
2617 |
+
"eval_samples_per_second": 3.529,
|
2618 |
+
"eval_steps_per_second": 0.441,
|
2619 |
+
"step": 174
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 5.46875,
|
2623 |
+
"grad_norm": 0.6415660970283229,
|
2624 |
+
"learning_rate": 2e-05,
|
2625 |
+
"loss": 0.7347,
|
2626 |
+
"step": 175
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 5.46875,
|
2630 |
+
"eval_loss": 0.6870352029800415,
|
2631 |
+
"eval_runtime": 56.5976,
|
2632 |
+
"eval_samples_per_second": 3.534,
|
2633 |
+
"eval_steps_per_second": 0.442,
|
2634 |
+
"step": 175
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 5.5,
|
2638 |
+
"grad_norm": 0.6569935128967318,
|
2639 |
+
"learning_rate": 2e-05,
|
2640 |
+
"loss": 0.6773,
|
2641 |
+
"step": 176
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 5.5,
|
2645 |
+
"eval_loss": 0.6870338320732117,
|
2646 |
+
"eval_runtime": 57.2325,
|
2647 |
+
"eval_samples_per_second": 3.495,
|
2648 |
+
"eval_steps_per_second": 0.437,
|
2649 |
+
"step": 176
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 5.53125,
|
2653 |
+
"grad_norm": 0.6895239904364278,
|
2654 |
+
"learning_rate": 2e-05,
|
2655 |
+
"loss": 0.7106,
|
2656 |
+
"step": 177
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 5.53125,
|
2660 |
+
"eval_loss": 0.6859387755393982,
|
2661 |
+
"eval_runtime": 57.3075,
|
2662 |
+
"eval_samples_per_second": 3.49,
|
2663 |
+
"eval_steps_per_second": 0.436,
|
2664 |
+
"step": 177
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"epoch": 5.5625,
|
2668 |
+
"grad_norm": 0.5855839234707383,
|
2669 |
+
"learning_rate": 2e-05,
|
2670 |
+
"loss": 0.7361,
|
2671 |
+
"step": 178
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 5.5625,
|
2675 |
+
"eval_loss": 0.6856819987297058,
|
2676 |
+
"eval_runtime": 57.5973,
|
2677 |
+
"eval_samples_per_second": 3.472,
|
2678 |
+
"eval_steps_per_second": 0.434,
|
2679 |
+
"step": 178
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 5.59375,
|
2683 |
+
"grad_norm": 0.6198072484940144,
|
2684 |
+
"learning_rate": 2e-05,
|
2685 |
+
"loss": 0.6386,
|
2686 |
+
"step": 179
|
2687 |
+
},
|
2688 |
+
{
|
2689 |
+
"epoch": 5.59375,
|
2690 |
+
"eval_loss": 0.6865841746330261,
|
2691 |
+
"eval_runtime": 57.4429,
|
2692 |
+
"eval_samples_per_second": 3.482,
|
2693 |
+
"eval_steps_per_second": 0.435,
|
2694 |
+
"step": 179
|
2695 |
+
},
|
2696 |
+
{
|
2697 |
+
"epoch": 5.625,
|
2698 |
+
"grad_norm": 0.6169444945747248,
|
2699 |
+
"learning_rate": 2e-05,
|
2700 |
+
"loss": 0.6455,
|
2701 |
+
"step": 180
|
2702 |
+
},
|
2703 |
+
{
|
2704 |
+
"epoch": 5.625,
|
2705 |
+
"eval_loss": 0.6871997714042664,
|
2706 |
+
"eval_runtime": 57.3975,
|
2707 |
+
"eval_samples_per_second": 3.484,
|
2708 |
+
"eval_steps_per_second": 0.436,
|
2709 |
+
"step": 180
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 5.65625,
|
2713 |
+
"grad_norm": 0.6524804251939137,
|
2714 |
+
"learning_rate": 2e-05,
|
2715 |
+
"loss": 0.6588,
|
2716 |
+
"step": 181
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 5.65625,
|
2720 |
+
"eval_loss": 0.6873356103897095,
|
2721 |
+
"eval_runtime": 57.4579,
|
2722 |
+
"eval_samples_per_second": 3.481,
|
2723 |
+
"eval_steps_per_second": 0.435,
|
2724 |
+
"step": 181
|
2725 |
+
},
|
2726 |
+
{
|
2727 |
+
"epoch": 5.6875,
|
2728 |
+
"grad_norm": 0.6578787618504525,
|
2729 |
+
"learning_rate": 2e-05,
|
2730 |
+
"loss": 0.6274,
|
2731 |
+
"step": 182
|
2732 |
+
},
|
2733 |
+
{
|
2734 |
+
"epoch": 5.6875,
|
2735 |
+
"eval_loss": 0.6880214214324951,
|
2736 |
+
"eval_runtime": 57.5735,
|
2737 |
+
"eval_samples_per_second": 3.474,
|
2738 |
+
"eval_steps_per_second": 0.434,
|
2739 |
+
"step": 182
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 5.71875,
|
2743 |
+
"grad_norm": 0.732160801451622,
|
2744 |
+
"learning_rate": 2e-05,
|
2745 |
+
"loss": 0.6623,
|
2746 |
+
"step": 183
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 5.71875,
|
2750 |
+
"eval_loss": 0.6879817247390747,
|
2751 |
+
"eval_runtime": 57.5801,
|
2752 |
+
"eval_samples_per_second": 3.473,
|
2753 |
+
"eval_steps_per_second": 0.434,
|
2754 |
+
"step": 183
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 5.75,
|
2758 |
+
"grad_norm": 0.7294753965107613,
|
2759 |
+
"learning_rate": 2e-05,
|
2760 |
+
"loss": 0.6562,
|
2761 |
+
"step": 184
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 5.75,
|
2765 |
+
"eval_loss": 0.6870495676994324,
|
2766 |
+
"eval_runtime": 57.6659,
|
2767 |
+
"eval_samples_per_second": 3.468,
|
2768 |
+
"eval_steps_per_second": 0.434,
|
2769 |
+
"step": 184
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 5.78125,
|
2773 |
+
"grad_norm": 0.6947870304881401,
|
2774 |
+
"learning_rate": 2e-05,
|
2775 |
+
"loss": 0.695,
|
2776 |
+
"step": 185
|
2777 |
+
},
|
2778 |
+
{
|
2779 |
+
"epoch": 5.78125,
|
2780 |
+
"eval_loss": 0.6856162548065186,
|
2781 |
+
"eval_runtime": 57.4452,
|
2782 |
+
"eval_samples_per_second": 3.482,
|
2783 |
+
"eval_steps_per_second": 0.435,
|
2784 |
+
"step": 185
|
2785 |
+
},
|
2786 |
+
{
|
2787 |
+
"epoch": 5.8125,
|
2788 |
+
"grad_norm": 0.7085011414361884,
|
2789 |
+
"learning_rate": 2e-05,
|
2790 |
+
"loss": 0.6634,
|
2791 |
+
"step": 186
|
2792 |
+
},
|
2793 |
+
{
|
2794 |
+
"epoch": 5.8125,
|
2795 |
+
"eval_loss": 0.6839439272880554,
|
2796 |
+
"eval_runtime": 57.3621,
|
2797 |
+
"eval_samples_per_second": 3.487,
|
2798 |
+
"eval_steps_per_second": 0.436,
|
2799 |
+
"step": 186
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 5.84375,
|
2803 |
+
"grad_norm": 0.6548606152047736,
|
2804 |
+
"learning_rate": 2e-05,
|
2805 |
+
"loss": 0.7117,
|
2806 |
+
"step": 187
|
2807 |
+
},
|
2808 |
+
{
|
2809 |
+
"epoch": 5.84375,
|
2810 |
+
"eval_loss": 0.6837204098701477,
|
2811 |
+
"eval_runtime": 57.3849,
|
2812 |
+
"eval_samples_per_second": 3.485,
|
2813 |
+
"eval_steps_per_second": 0.436,
|
2814 |
+
"step": 187
|
2815 |
+
},
|
2816 |
+
{
|
2817 |
+
"epoch": 5.875,
|
2818 |
+
"grad_norm": 0.6662179186613736,
|
2819 |
+
"learning_rate": 2e-05,
|
2820 |
+
"loss": 0.6528,
|
2821 |
+
"step": 188
|
2822 |
+
},
|
2823 |
+
{
|
2824 |
+
"epoch": 5.875,
|
2825 |
+
"eval_loss": 0.6844826340675354,
|
2826 |
+
"eval_runtime": 57.3173,
|
2827 |
+
"eval_samples_per_second": 3.489,
|
2828 |
+
"eval_steps_per_second": 0.436,
|
2829 |
+
"step": 188
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 5.90625,
|
2833 |
+
"grad_norm": 0.6638311768585444,
|
2834 |
+
"learning_rate": 2e-05,
|
2835 |
+
"loss": 0.6582,
|
2836 |
+
"step": 189
|
2837 |
+
},
|
2838 |
+
{
|
2839 |
+
"epoch": 5.90625,
|
2840 |
+
"eval_loss": 0.6846724152565002,
|
2841 |
+
"eval_runtime": 57.5354,
|
2842 |
+
"eval_samples_per_second": 3.476,
|
2843 |
+
"eval_steps_per_second": 0.435,
|
2844 |
+
"step": 189
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 5.9375,
|
2848 |
+
"grad_norm": 0.7007259768118588,
|
2849 |
+
"learning_rate": 2e-05,
|
2850 |
+
"loss": 0.6742,
|
2851 |
+
"step": 190
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 5.9375,
|
2855 |
+
"eval_loss": 0.6834731101989746,
|
2856 |
+
"eval_runtime": 57.4134,
|
2857 |
+
"eval_samples_per_second": 3.484,
|
2858 |
+
"eval_steps_per_second": 0.435,
|
2859 |
+
"step": 190
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 5.96875,
|
2863 |
+
"grad_norm": 0.6563132346432226,
|
2864 |
+
"learning_rate": 2e-05,
|
2865 |
+
"loss": 0.6752,
|
2866 |
+
"step": 191
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 5.96875,
|
2870 |
+
"eval_loss": 0.6817070245742798,
|
2871 |
+
"eval_runtime": 56.6649,
|
2872 |
+
"eval_samples_per_second": 3.53,
|
2873 |
+
"eval_steps_per_second": 0.441,
|
2874 |
+
"step": 191
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 6.0,
|
2878 |
+
"grad_norm": 0.6349703649303867,
|
2879 |
+
"learning_rate": 2e-05,
|
2880 |
+
"loss": 0.6795,
|
2881 |
+
"step": 192
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 6.0,
|
2885 |
+
"eval_loss": 0.6804311871528625,
|
2886 |
+
"eval_runtime": 56.4378,
|
2887 |
+
"eval_samples_per_second": 3.544,
|
2888 |
+
"eval_steps_per_second": 0.443,
|
2889 |
+
"step": 192
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 6.03125,
|
2893 |
+
"grad_norm": 0.6716039243820887,
|
2894 |
+
"learning_rate": 2e-05,
|
2895 |
+
"loss": 0.7145,
|
2896 |
+
"step": 193
|
2897 |
+
},
|
2898 |
+
{
|
2899 |
+
"epoch": 6.03125,
|
2900 |
+
"eval_loss": 0.6804825067520142,
|
2901 |
+
"eval_runtime": 56.6403,
|
2902 |
+
"eval_samples_per_second": 3.531,
|
2903 |
+
"eval_steps_per_second": 0.441,
|
2904 |
+
"step": 193
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 6.0625,
|
2908 |
+
"grad_norm": 0.5950395984856348,
|
2909 |
+
"learning_rate": 2e-05,
|
2910 |
+
"loss": 0.6768,
|
2911 |
+
"step": 194
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 6.0625,
|
2915 |
+
"eval_loss": 0.6823931932449341,
|
2916 |
+
"eval_runtime": 56.5459,
|
2917 |
+
"eval_samples_per_second": 3.537,
|
2918 |
+
"eval_steps_per_second": 0.442,
|
2919 |
+
"step": 194
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 6.09375,
|
2923 |
+
"grad_norm": 0.6787703014730869,
|
2924 |
+
"learning_rate": 2e-05,
|
2925 |
+
"loss": 0.6158,
|
2926 |
+
"step": 195
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 6.09375,
|
2930 |
+
"eval_loss": 0.6854414939880371,
|
2931 |
+
"eval_runtime": 56.5293,
|
2932 |
+
"eval_samples_per_second": 3.538,
|
2933 |
+
"eval_steps_per_second": 0.442,
|
2934 |
+
"step": 195
|
2935 |
+
},
|
2936 |
+
{
|
2937 |
+
"epoch": 6.125,
|
2938 |
+
"grad_norm": 0.6526684210082853,
|
2939 |
+
"learning_rate": 2e-05,
|
2940 |
+
"loss": 0.6479,
|
2941 |
+
"step": 196
|
2942 |
+
},
|
2943 |
+
{
|
2944 |
+
"epoch": 6.125,
|
2945 |
+
"eval_loss": 0.6892845034599304,
|
2946 |
+
"eval_runtime": 56.5099,
|
2947 |
+
"eval_samples_per_second": 3.539,
|
2948 |
+
"eval_steps_per_second": 0.442,
|
2949 |
+
"step": 196
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 6.15625,
|
2953 |
+
"grad_norm": 0.6997704487164051,
|
2954 |
+
"learning_rate": 2e-05,
|
2955 |
+
"loss": 0.6706,
|
2956 |
+
"step": 197
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 6.15625,
|
2960 |
+
"eval_loss": 0.6941932439804077,
|
2961 |
+
"eval_runtime": 58.514,
|
2962 |
+
"eval_samples_per_second": 3.418,
|
2963 |
+
"eval_steps_per_second": 0.427,
|
2964 |
+
"step": 197
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 6.1875,
|
2968 |
+
"grad_norm": 0.7511370305129338,
|
2969 |
+
"learning_rate": 2e-05,
|
2970 |
+
"loss": 0.7418,
|
2971 |
+
"step": 198
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 6.1875,
|
2975 |
+
"eval_loss": 0.6964046955108643,
|
2976 |
+
"eval_runtime": 58.4428,
|
2977 |
+
"eval_samples_per_second": 3.422,
|
2978 |
+
"eval_steps_per_second": 0.428,
|
2979 |
+
"step": 198
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 6.21875,
|
2983 |
+
"grad_norm": 0.8468482037911412,
|
2984 |
+
"learning_rate": 2e-05,
|
2985 |
+
"loss": 0.618,
|
2986 |
+
"step": 199
|
2987 |
+
},
|
2988 |
+
{
|
2989 |
+
"epoch": 6.21875,
|
2990 |
+
"eval_loss": 0.6947888731956482,
|
2991 |
+
"eval_runtime": 56.6921,
|
2992 |
+
"eval_samples_per_second": 3.528,
|
2993 |
+
"eval_steps_per_second": 0.441,
|
2994 |
+
"step": 199
|
2995 |
+
},
|
2996 |
+
{
|
2997 |
+
"epoch": 6.25,
|
2998 |
+
"grad_norm": 0.80366391754735,
|
2999 |
+
"learning_rate": 2e-05,
|
3000 |
+
"loss": 0.6712,
|
3001 |
+
"step": 200
|
3002 |
+
},
|
3003 |
+
{
|
3004 |
+
"epoch": 6.25,
|
3005 |
+
"eval_loss": 0.691255509853363,
|
3006 |
+
"eval_runtime": 56.7536,
|
3007 |
+
"eval_samples_per_second": 3.524,
|
3008 |
+
"eval_steps_per_second": 0.441,
|
3009 |
+
"step": 200
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 6.28125,
|
3013 |
+
"grad_norm": 0.7123001788838409,
|
3014 |
+
"learning_rate": 2e-05,
|
3015 |
+
"loss": 0.6886,
|
3016 |
+
"step": 201
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 6.28125,
|
3020 |
+
"eval_loss": 0.6888566613197327,
|
3021 |
+
"eval_runtime": 57.4537,
|
3022 |
+
"eval_samples_per_second": 3.481,
|
3023 |
+
"eval_steps_per_second": 0.435,
|
3024 |
+
"step": 201
|
3025 |
+
},
|
3026 |
+
{
|
3027 |
+
"epoch": 6.3125,
|
3028 |
+
"grad_norm": 0.7785807978964993,
|
3029 |
+
"learning_rate": 2e-05,
|
3030 |
+
"loss": 0.6096,
|
3031 |
+
"step": 202
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 6.3125,
|
3035 |
+
"eval_loss": 0.6869829297065735,
|
3036 |
+
"eval_runtime": 57.3967,
|
3037 |
+
"eval_samples_per_second": 3.485,
|
3038 |
+
"eval_steps_per_second": 0.436,
|
3039 |
+
"step": 202
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 6.34375,
|
3043 |
+
"grad_norm": 0.6771659776183533,
|
3044 |
+
"learning_rate": 2e-05,
|
3045 |
+
"loss": 0.7328,
|
3046 |
+
"step": 203
|
3047 |
+
},
|
3048 |
+
{
|
3049 |
+
"epoch": 6.34375,
|
3050 |
+
"eval_loss": 0.6867367625236511,
|
3051 |
+
"eval_runtime": 57.5277,
|
3052 |
+
"eval_samples_per_second": 3.477,
|
3053 |
+
"eval_steps_per_second": 0.435,
|
3054 |
+
"step": 203
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 6.375,
|
3058 |
+
"grad_norm": 0.8106446356590065,
|
3059 |
+
"learning_rate": 2e-05,
|
3060 |
+
"loss": 0.5931,
|
3061 |
+
"step": 204
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 6.375,
|
3065 |
+
"eval_loss": 0.6862130165100098,
|
3066 |
+
"eval_runtime": 57.4868,
|
3067 |
+
"eval_samples_per_second": 3.479,
|
3068 |
+
"eval_steps_per_second": 0.435,
|
3069 |
+
"step": 204
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 6.40625,
|
3073 |
+
"grad_norm": 0.6600674902481064,
|
3074 |
+
"learning_rate": 2e-05,
|
3075 |
+
"loss": 0.5789,
|
3076 |
+
"step": 205
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 6.40625,
|
3080 |
+
"eval_loss": 0.6866827607154846,
|
3081 |
+
"eval_runtime": 57.4287,
|
3082 |
+
"eval_samples_per_second": 3.483,
|
3083 |
+
"eval_steps_per_second": 0.435,
|
3084 |
+
"step": 205
|
3085 |
+
},
|
3086 |
+
{
|
3087 |
+
"epoch": 6.4375,
|
3088 |
+
"grad_norm": 0.8177118767015663,
|
3089 |
+
"learning_rate": 2e-05,
|
3090 |
+
"loss": 0.6395,
|
3091 |
+
"step": 206
|
3092 |
+
},
|
3093 |
+
{
|
3094 |
+
"epoch": 6.4375,
|
3095 |
+
"eval_loss": 0.6866394281387329,
|
3096 |
+
"eval_runtime": 57.0918,
|
3097 |
+
"eval_samples_per_second": 3.503,
|
3098 |
+
"eval_steps_per_second": 0.438,
|
3099 |
+
"step": 206
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 6.46875,
|
3103 |
+
"grad_norm": 0.7284237801181533,
|
3104 |
+
"learning_rate": 2e-05,
|
3105 |
+
"loss": 0.6835,
|
3106 |
+
"step": 207
|
3107 |
+
},
|
3108 |
+
{
|
3109 |
+
"epoch": 6.46875,
|
3110 |
+
"eval_loss": 0.6864017248153687,
|
3111 |
+
"eval_runtime": 57.1565,
|
3112 |
+
"eval_samples_per_second": 3.499,
|
3113 |
+
"eval_steps_per_second": 0.437,
|
3114 |
+
"step": 207
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 6.5,
|
3118 |
+
"grad_norm": 0.7603002790103086,
|
3119 |
+
"learning_rate": 2e-05,
|
3120 |
+
"loss": 0.6347,
|
3121 |
+
"step": 208
|
3122 |
+
},
|
3123 |
+
{
|
3124 |
+
"epoch": 6.5,
|
3125 |
+
"eval_loss": 0.6871703267097473,
|
3126 |
+
"eval_runtime": 57.4181,
|
3127 |
+
"eval_samples_per_second": 3.483,
|
3128 |
+
"eval_steps_per_second": 0.435,
|
3129 |
+
"step": 208
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 6.53125,
|
3133 |
+
"grad_norm": 0.8359766442946917,
|
3134 |
+
"learning_rate": 2e-05,
|
3135 |
+
"loss": 0.6088,
|
3136 |
+
"step": 209
|
3137 |
+
},
|
3138 |
+
{
|
3139 |
+
"epoch": 6.53125,
|
3140 |
+
"eval_loss": 0.6878347992897034,
|
3141 |
+
"eval_runtime": 57.4837,
|
3142 |
+
"eval_samples_per_second": 3.479,
|
3143 |
+
"eval_steps_per_second": 0.435,
|
3144 |
+
"step": 209
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 6.5625,
|
3148 |
+
"grad_norm": 0.7778968951616311,
|
3149 |
+
"learning_rate": 2e-05,
|
3150 |
+
"loss": 0.5912,
|
3151 |
+
"step": 210
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 6.5625,
|
3155 |
+
"eval_loss": 0.6893374919891357,
|
3156 |
+
"eval_runtime": 57.6159,
|
3157 |
+
"eval_samples_per_second": 3.471,
|
3158 |
+
"eval_steps_per_second": 0.434,
|
3159 |
+
"step": 210
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 6.59375,
|
3163 |
+
"grad_norm": 0.8300437291816744,
|
3164 |
+
"learning_rate": 2e-05,
|
3165 |
+
"loss": 0.6299,
|
3166 |
+
"step": 211
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 6.59375,
|
3170 |
+
"eval_loss": 0.6899804472923279,
|
3171 |
+
"eval_runtime": 57.1491,
|
3172 |
+
"eval_samples_per_second": 3.5,
|
3173 |
+
"eval_steps_per_second": 0.437,
|
3174 |
+
"step": 211
|
3175 |
+
},
|
3176 |
+
{
|
3177 |
+
"epoch": 6.625,
|
3178 |
+
"grad_norm": 0.7994430152763061,
|
3179 |
+
"learning_rate": 2e-05,
|
3180 |
+
"loss": 0.6073,
|
3181 |
+
"step": 212
|
3182 |
+
},
|
3183 |
+
{
|
3184 |
+
"epoch": 6.625,
|
3185 |
+
"eval_loss": 0.6889459490776062,
|
3186 |
+
"eval_runtime": 57.3773,
|
3187 |
+
"eval_samples_per_second": 3.486,
|
3188 |
+
"eval_steps_per_second": 0.436,
|
3189 |
+
"step": 212
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 6.65625,
|
3193 |
+
"grad_norm": 0.7475670453371858,
|
3194 |
+
"learning_rate": 2e-05,
|
3195 |
+
"loss": 0.6774,
|
3196 |
+
"step": 213
|
3197 |
+
},
|
3198 |
+
{
|
3199 |
+
"epoch": 6.65625,
|
3200 |
+
"eval_loss": 0.6873544454574585,
|
3201 |
+
"eval_runtime": 57.4114,
|
3202 |
+
"eval_samples_per_second": 3.484,
|
3203 |
+
"eval_steps_per_second": 0.435,
|
3204 |
+
"step": 213
|
3205 |
+
},
|
3206 |
+
{
|
3207 |
+
"epoch": 6.6875,
|
3208 |
+
"grad_norm": 0.7281375343651885,
|
3209 |
+
"learning_rate": 2e-05,
|
3210 |
+
"loss": 0.6404,
|
3211 |
+
"step": 214
|
3212 |
+
},
|
3213 |
+
{
|
3214 |
+
"epoch": 6.6875,
|
3215 |
+
"eval_loss": 0.6867469549179077,
|
3216 |
+
"eval_runtime": 57.2899,
|
3217 |
+
"eval_samples_per_second": 3.491,
|
3218 |
+
"eval_steps_per_second": 0.436,
|
3219 |
+
"step": 214
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 6.71875,
|
3223 |
+
"grad_norm": 0.7684115091080507,
|
3224 |
+
"learning_rate": 2e-05,
|
3225 |
+
"loss": 0.6382,
|
3226 |
+
"step": 215
|
3227 |
+
},
|
3228 |
+
{
|
3229 |
+
"epoch": 6.71875,
|
3230 |
+
"eval_loss": 0.6860084533691406,
|
3231 |
+
"eval_runtime": 57.38,
|
3232 |
+
"eval_samples_per_second": 3.486,
|
3233 |
+
"eval_steps_per_second": 0.436,
|
3234 |
+
"step": 215
|
3235 |
+
},
|
3236 |
+
{
|
3237 |
+
"epoch": 6.75,
|
3238 |
+
"grad_norm": 0.7962356695445627,
|
3239 |
+
"learning_rate": 2e-05,
|
3240 |
+
"loss": 0.6398,
|
3241 |
+
"step": 216
|
3242 |
+
},
|
3243 |
+
{
|
3244 |
+
"epoch": 6.75,
|
3245 |
+
"eval_loss": 0.6856002807617188,
|
3246 |
+
"eval_runtime": 57.2399,
|
3247 |
+
"eval_samples_per_second": 3.494,
|
3248 |
+
"eval_steps_per_second": 0.437,
|
3249 |
+
"step": 216
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 6.78125,
|
3253 |
+
"grad_norm": 0.7893826807634562,
|
3254 |
+
"learning_rate": 2e-05,
|
3255 |
+
"loss": 0.59,
|
3256 |
+
"step": 217
|
3257 |
+
},
|
3258 |
+
{
|
3259 |
+
"epoch": 6.78125,
|
3260 |
+
"eval_loss": 0.6870043873786926,
|
3261 |
+
"eval_runtime": 57.1671,
|
3262 |
+
"eval_samples_per_second": 3.499,
|
3263 |
+
"eval_steps_per_second": 0.437,
|
3264 |
+
"step": 217
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 6.8125,
|
3268 |
+
"grad_norm": 0.8329644141570051,
|
3269 |
+
"learning_rate": 2e-05,
|
3270 |
+
"loss": 0.5932,
|
3271 |
+
"step": 218
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 6.8125,
|
3275 |
+
"eval_loss": 0.6870229840278625,
|
3276 |
+
"eval_runtime": 57.3642,
|
3277 |
+
"eval_samples_per_second": 3.486,
|
3278 |
+
"eval_steps_per_second": 0.436,
|
3279 |
+
"step": 218
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 6.84375,
|
3283 |
+
"grad_norm": 0.9075127715796286,
|
3284 |
+
"learning_rate": 2e-05,
|
3285 |
+
"loss": 0.669,
|
3286 |
+
"step": 219
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 6.84375,
|
3290 |
+
"eval_loss": 0.6856889128684998,
|
3291 |
+
"eval_runtime": 57.4226,
|
3292 |
+
"eval_samples_per_second": 3.483,
|
3293 |
+
"eval_steps_per_second": 0.435,
|
3294 |
+
"step": 219
|
3295 |
+
},
|
3296 |
+
{
|
3297 |
+
"epoch": 6.875,
|
3298 |
+
"grad_norm": 0.8464505810718659,
|
3299 |
+
"learning_rate": 2e-05,
|
3300 |
+
"loss": 0.686,
|
3301 |
+
"step": 220
|
3302 |
+
},
|
3303 |
+
{
|
3304 |
+
"epoch": 6.875,
|
3305 |
+
"eval_loss": 0.6835823059082031,
|
3306 |
+
"eval_runtime": 57.2105,
|
3307 |
+
"eval_samples_per_second": 3.496,
|
3308 |
+
"eval_steps_per_second": 0.437,
|
3309 |
+
"step": 220
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 6.90625,
|
3313 |
+
"grad_norm": 0.7799140952562077,
|
3314 |
+
"learning_rate": 2e-05,
|
3315 |
+
"loss": 0.6503,
|
3316 |
+
"step": 221
|
3317 |
+
},
|
3318 |
+
{
|
3319 |
+
"epoch": 6.90625,
|
3320 |
+
"eval_loss": 0.6825523376464844,
|
3321 |
+
"eval_runtime": 57.0985,
|
3322 |
+
"eval_samples_per_second": 3.503,
|
3323 |
+
"eval_steps_per_second": 0.438,
|
3324 |
+
"step": 221
|
3325 |
+
},
|
3326 |
+
{
|
3327 |
+
"epoch": 6.9375,
|
3328 |
+
"grad_norm": 0.8495343756184095,
|
3329 |
+
"learning_rate": 2e-05,
|
3330 |
+
"loss": 0.6533,
|
3331 |
+
"step": 222
|
3332 |
+
},
|
3333 |
+
{
|
3334 |
+
"epoch": 6.9375,
|
3335 |
+
"eval_loss": 0.6813305616378784,
|
3336 |
+
"eval_runtime": 57.1896,
|
3337 |
+
"eval_samples_per_second": 3.497,
|
3338 |
+
"eval_steps_per_second": 0.437,
|
3339 |
+
"step": 222
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 6.96875,
|
3343 |
+
"grad_norm": 0.8191950862245413,
|
3344 |
+
"learning_rate": 2e-05,
|
3345 |
+
"loss": 0.6627,
|
3346 |
+
"step": 223
|
3347 |
+
},
|
3348 |
+
{
|
3349 |
+
"epoch": 6.96875,
|
3350 |
+
"eval_loss": 0.6800451874732971,
|
3351 |
+
"eval_runtime": 57.3904,
|
3352 |
+
"eval_samples_per_second": 3.485,
|
3353 |
+
"eval_steps_per_second": 0.436,
|
3354 |
+
"step": 223
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 7.0,
|
3358 |
+
"grad_norm": 0.8196747980504347,
|
3359 |
+
"learning_rate": 2e-05,
|
3360 |
+
"loss": 0.7337,
|
3361 |
+
"step": 224
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 7.0,
|
3365 |
+
"eval_loss": 0.6801488399505615,
|
3366 |
+
"eval_runtime": 59.0121,
|
3367 |
+
"eval_samples_per_second": 3.389,
|
3368 |
+
"eval_steps_per_second": 0.424,
|
3369 |
+
"step": 224
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 7.03125,
|
3373 |
+
"grad_norm": 0.7095908101379159,
|
3374 |
+
"learning_rate": 2e-05,
|
3375 |
+
"loss": 0.6203,
|
3376 |
+
"step": 225
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 7.03125,
|
3380 |
+
"eval_loss": 0.6816287040710449,
|
3381 |
+
"eval_runtime": 57.1754,
|
3382 |
+
"eval_samples_per_second": 3.498,
|
3383 |
+
"eval_steps_per_second": 0.437,
|
3384 |
+
"step": 225
|
3385 |
+
},
|
3386 |
+
{
|
3387 |
+
"epoch": 7.0625,
|
3388 |
+
"grad_norm": 0.7916901149958031,
|
3389 |
+
"learning_rate": 2e-05,
|
3390 |
+
"loss": 0.5489,
|
3391 |
+
"step": 226
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 7.0625,
|
3395 |
+
"eval_loss": 0.6857742071151733,
|
3396 |
+
"eval_runtime": 58.0461,
|
3397 |
+
"eval_samples_per_second": 3.446,
|
3398 |
+
"eval_steps_per_second": 0.431,
|
3399 |
+
"step": 226
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 7.09375,
|
3403 |
+
"grad_norm": 0.8190252103616696,
|
3404 |
+
"learning_rate": 2e-05,
|
3405 |
+
"loss": 0.613,
|
3406 |
+
"step": 227
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 7.09375,
|
3410 |
+
"eval_loss": 0.6924745440483093,
|
3411 |
+
"eval_runtime": 58.351,
|
3412 |
+
"eval_samples_per_second": 3.428,
|
3413 |
+
"eval_steps_per_second": 0.428,
|
3414 |
+
"step": 227
|
3415 |
+
},
|
3416 |
+
{
|
3417 |
+
"epoch": 7.125,
|
3418 |
+
"grad_norm": 0.9385023798254423,
|
3419 |
+
"learning_rate": 2e-05,
|
3420 |
+
"loss": 0.5647,
|
3421 |
+
"step": 228
|
3422 |
+
},
|
3423 |
+
{
|
3424 |
+
"epoch": 7.125,
|
3425 |
+
"eval_loss": 0.7020445466041565,
|
3426 |
+
"eval_runtime": 58.1868,
|
3427 |
+
"eval_samples_per_second": 3.437,
|
3428 |
+
"eval_steps_per_second": 0.43,
|
3429 |
+
"step": 228
|
3430 |
+
},
|
3431 |
+
{
|
3432 |
+
"epoch": 7.15625,
|
3433 |
+
"grad_norm": 1.178887354836488,
|
3434 |
+
"learning_rate": 2e-05,
|
3435 |
+
"loss": 0.5957,
|
3436 |
+
"step": 229
|
3437 |
+
},
|
3438 |
+
{
|
3439 |
+
"epoch": 7.15625,
|
3440 |
+
"eval_loss": 0.7064430117607117,
|
3441 |
+
"eval_runtime": 58.3297,
|
3442 |
+
"eval_samples_per_second": 3.429,
|
3443 |
+
"eval_steps_per_second": 0.429,
|
3444 |
+
"step": 229
|
3445 |
+
},
|
3446 |
+
{
|
3447 |
+
"epoch": 7.1875,
|
3448 |
+
"grad_norm": 1.0054198258359948,
|
3449 |
+
"learning_rate": 2e-05,
|
3450 |
+
"loss": 0.5667,
|
3451 |
+
"step": 230
|
3452 |
+
},
|
3453 |
+
{
|
3454 |
+
"epoch": 7.1875,
|
3455 |
+
"eval_loss": 0.7060463428497314,
|
3456 |
+
"eval_runtime": 58.3212,
|
3457 |
+
"eval_samples_per_second": 3.429,
|
3458 |
+
"eval_steps_per_second": 0.429,
|
3459 |
+
"step": 230
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 7.21875,
|
3463 |
+
"grad_norm": 1.005055760217432,
|
3464 |
+
"learning_rate": 2e-05,
|
3465 |
+
"loss": 0.6546,
|
3466 |
+
"step": 231
|
3467 |
+
},
|
3468 |
+
{
|
3469 |
+
"epoch": 7.21875,
|
3470 |
+
"eval_loss": 0.7029504179954529,
|
3471 |
+
"eval_runtime": 58.0188,
|
3472 |
+
"eval_samples_per_second": 3.447,
|
3473 |
+
"eval_steps_per_second": 0.431,
|
3474 |
+
"step": 231
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 7.25,
|
3478 |
+
"grad_norm": 0.9458472260674603,
|
3479 |
+
"learning_rate": 2e-05,
|
3480 |
+
"loss": 0.6503,
|
3481 |
+
"step": 232
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 7.25,
|
3485 |
+
"eval_loss": 0.6988745927810669,
|
3486 |
+
"eval_runtime": 58.3149,
|
3487 |
+
"eval_samples_per_second": 3.43,
|
3488 |
+
"eval_steps_per_second": 0.429,
|
3489 |
+
"step": 232
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 7.28125,
|
3493 |
+
"grad_norm": 1.022594832986886,
|
3494 |
+
"learning_rate": 2e-05,
|
3495 |
+
"loss": 0.611,
|
3496 |
+
"step": 233
|
3497 |
+
},
|
3498 |
+
{
|
3499 |
+
"epoch": 7.28125,
|
3500 |
+
"eval_loss": 0.6943955421447754,
|
3501 |
+
"eval_runtime": 58.3693,
|
3502 |
+
"eval_samples_per_second": 3.426,
|
3503 |
+
"eval_steps_per_second": 0.428,
|
3504 |
+
"step": 233
|
3505 |
+
},
|
3506 |
+
{
|
3507 |
+
"epoch": 7.3125,
|
3508 |
+
"grad_norm": 0.8953283498269817,
|
3509 |
+
"learning_rate": 2e-05,
|
3510 |
+
"loss": 0.6438,
|
3511 |
+
"step": 234
|
3512 |
+
},
|
3513 |
+
{
|
3514 |
+
"epoch": 7.3125,
|
3515 |
+
"eval_loss": 0.6924715638160706,
|
3516 |
+
"eval_runtime": 58.214,
|
3517 |
+
"eval_samples_per_second": 3.436,
|
3518 |
+
"eval_steps_per_second": 0.429,
|
3519 |
+
"step": 234
|
3520 |
+
},
|
3521 |
+
{
|
3522 |
+
"epoch": 7.34375,
|
3523 |
+
"grad_norm": 0.9094812403228425,
|
3524 |
+
"learning_rate": 2e-05,
|
3525 |
+
"loss": 0.6123,
|
3526 |
+
"step": 235
|
3527 |
+
},
|
3528 |
+
{
|
3529 |
+
"epoch": 7.34375,
|
3530 |
+
"eval_loss": 0.690609335899353,
|
3531 |
+
"eval_runtime": 58.6042,
|
3532 |
+
"eval_samples_per_second": 3.413,
|
3533 |
+
"eval_steps_per_second": 0.427,
|
3534 |
+
"step": 235
|
3535 |
+
},
|
3536 |
+
{
|
3537 |
+
"epoch": 7.375,
|
3538 |
+
"grad_norm": 0.9433427892139121,
|
3539 |
+
"learning_rate": 2e-05,
|
3540 |
+
"loss": 0.5772,
|
3541 |
+
"step": 236
|
3542 |
+
},
|
3543 |
+
{
|
3544 |
+
"epoch": 7.375,
|
3545 |
+
"eval_loss": 0.6895288825035095,
|
3546 |
+
"eval_runtime": 58.0083,
|
3547 |
+
"eval_samples_per_second": 3.448,
|
3548 |
+
"eval_steps_per_second": 0.431,
|
3549 |
+
"step": 236
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 7.40625,
|
3553 |
+
"grad_norm": 0.9654218046347709,
|
3554 |
+
"learning_rate": 2e-05,
|
3555 |
+
"loss": 0.62,
|
3556 |
+
"step": 237
|
3557 |
+
},
|
3558 |
+
{
|
3559 |
+
"epoch": 7.40625,
|
3560 |
+
"eval_loss": 0.6887797713279724,
|
3561 |
+
"eval_runtime": 58.1374,
|
3562 |
+
"eval_samples_per_second": 3.44,
|
3563 |
+
"eval_steps_per_second": 0.43,
|
3564 |
+
"step": 237
|
3565 |
+
},
|
3566 |
+
{
|
3567 |
+
"epoch": 7.4375,
|
3568 |
+
"grad_norm": 1.033591761626784,
|
3569 |
+
"learning_rate": 2e-05,
|
3570 |
+
"loss": 0.6163,
|
3571 |
+
"step": 238
|
3572 |
+
},
|
3573 |
+
{
|
3574 |
+
"epoch": 7.4375,
|
3575 |
+
"eval_loss": 0.6888651847839355,
|
3576 |
+
"eval_runtime": 58.2539,
|
3577 |
+
"eval_samples_per_second": 3.433,
|
3578 |
+
"eval_steps_per_second": 0.429,
|
3579 |
+
"step": 238
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 7.46875,
|
3583 |
+
"grad_norm": 0.9059638854254064,
|
3584 |
+
"learning_rate": 2e-05,
|
3585 |
+
"loss": 0.6364,
|
3586 |
+
"step": 239
|
3587 |
+
},
|
3588 |
+
{
|
3589 |
+
"epoch": 7.46875,
|
3590 |
+
"eval_loss": 0.6905540227890015,
|
3591 |
+
"eval_runtime": 58.0992,
|
3592 |
+
"eval_samples_per_second": 3.442,
|
3593 |
+
"eval_steps_per_second": 0.43,
|
3594 |
+
"step": 239
|
3595 |
+
},
|
3596 |
+
{
|
3597 |
+
"epoch": 7.5,
|
3598 |
+
"grad_norm": 0.9193726862314907,
|
3599 |
+
"learning_rate": 2e-05,
|
3600 |
+
"loss": 0.5845,
|
3601 |
+
"step": 240
|
3602 |
+
},
|
3603 |
+
{
|
3604 |
+
"epoch": 7.5,
|
3605 |
+
"eval_loss": 0.693742036819458,
|
3606 |
+
"eval_runtime": 58.2336,
|
3607 |
+
"eval_samples_per_second": 3.434,
|
3608 |
+
"eval_steps_per_second": 0.429,
|
3609 |
+
"step": 240
|
3610 |
+
},
|
3611 |
+
{
|
3612 |
+
"epoch": 7.53125,
|
3613 |
+
"grad_norm": 0.8539139714986941,
|
3614 |
+
"learning_rate": 2e-05,
|
3615 |
+
"loss": 0.6344,
|
3616 |
+
"step": 241
|
3617 |
+
},
|
3618 |
+
{
|
3619 |
+
"epoch": 7.53125,
|
3620 |
+
"eval_loss": 0.696897566318512,
|
3621 |
+
"eval_runtime": 59.3124,
|
3622 |
+
"eval_samples_per_second": 3.372,
|
3623 |
+
"eval_steps_per_second": 0.421,
|
3624 |
+
"step": 241
|
3625 |
+
},
|
3626 |
+
{
|
3627 |
+
"epoch": 7.5625,
|
3628 |
+
"grad_norm": 0.9552275495908527,
|
3629 |
+
"learning_rate": 2e-05,
|
3630 |
+
"loss": 0.6159,
|
3631 |
+
"step": 242
|
3632 |
+
},
|
3633 |
+
{
|
3634 |
+
"epoch": 7.5625,
|
3635 |
+
"eval_loss": 0.6991227865219116,
|
3636 |
+
"eval_runtime": 58.1037,
|
3637 |
+
"eval_samples_per_second": 3.442,
|
3638 |
+
"eval_steps_per_second": 0.43,
|
3639 |
+
"step": 242
|
3640 |
+
},
|
3641 |
+
{
|
3642 |
+
"epoch": 7.59375,
|
3643 |
+
"grad_norm": 0.8953175982318474,
|
3644 |
+
"learning_rate": 2e-05,
|
3645 |
+
"loss": 0.5934,
|
3646 |
+
"step": 243
|
3647 |
+
},
|
3648 |
+
{
|
3649 |
+
"epoch": 7.59375,
|
3650 |
+
"eval_loss": 0.7009669542312622,
|
3651 |
+
"eval_runtime": 59.9178,
|
3652 |
+
"eval_samples_per_second": 3.338,
|
3653 |
+
"eval_steps_per_second": 0.417,
|
3654 |
+
"step": 243
|
3655 |
+
},
|
3656 |
+
{
|
3657 |
+
"epoch": 7.625,
|
3658 |
+
"grad_norm": 1.1254017430464345,
|
3659 |
+
"learning_rate": 2e-05,
|
3660 |
+
"loss": 0.6721,
|
3661 |
+
"step": 244
|
3662 |
+
},
|
3663 |
+
{
|
3664 |
+
"epoch": 7.625,
|
3665 |
+
"eval_loss": 0.7003803253173828,
|
3666 |
+
"eval_runtime": 59.9278,
|
3667 |
+
"eval_samples_per_second": 3.337,
|
3668 |
+
"eval_steps_per_second": 0.417,
|
3669 |
+
"step": 244
|
3670 |
+
},
|
3671 |
+
{
|
3672 |
+
"epoch": 7.65625,
|
3673 |
+
"grad_norm": 0.9666525684896161,
|
3674 |
+
"learning_rate": 2e-05,
|
3675 |
+
"loss": 0.5793,
|
3676 |
+
"step": 245
|
3677 |
+
},
|
3678 |
+
{
|
3679 |
+
"epoch": 7.65625,
|
3680 |
+
"eval_loss": 0.6997054815292358,
|
3681 |
+
"eval_runtime": 58.3355,
|
3682 |
+
"eval_samples_per_second": 3.428,
|
3683 |
+
"eval_steps_per_second": 0.429,
|
3684 |
+
"step": 245
|
3685 |
+
},
|
3686 |
+
{
|
3687 |
+
"epoch": 7.6875,
|
3688 |
+
"grad_norm": 1.0500213825228455,
|
3689 |
+
"learning_rate": 2e-05,
|
3690 |
+
"loss": 0.6262,
|
3691 |
+
"step": 246
|
3692 |
+
},
|
3693 |
+
{
|
3694 |
+
"epoch": 7.6875,
|
3695 |
+
"eval_loss": 0.6956760883331299,
|
3696 |
+
"eval_runtime": 57.9053,
|
3697 |
+
"eval_samples_per_second": 3.454,
|
3698 |
+
"eval_steps_per_second": 0.432,
|
3699 |
+
"step": 246
|
3700 |
+
},
|
3701 |
+
{
|
3702 |
+
"epoch": 7.71875,
|
3703 |
+
"grad_norm": 1.0445166827193935,
|
3704 |
+
"learning_rate": 2e-05,
|
3705 |
+
"loss": 0.6111,
|
3706 |
+
"step": 247
|
3707 |
+
},
|
3708 |
+
{
|
3709 |
+
"epoch": 7.71875,
|
3710 |
+
"eval_loss": 0.6909776329994202,
|
3711 |
+
"eval_runtime": 58.1856,
|
3712 |
+
"eval_samples_per_second": 3.437,
|
3713 |
+
"eval_steps_per_second": 0.43,
|
3714 |
+
"step": 247
|
3715 |
+
},
|
3716 |
+
{
|
3717 |
+
"epoch": 7.75,
|
3718 |
+
"grad_norm": 0.8935484171996528,
|
3719 |
+
"learning_rate": 2e-05,
|
3720 |
+
"loss": 0.6036,
|
3721 |
+
"step": 248
|
3722 |
+
},
|
3723 |
+
{
|
3724 |
+
"epoch": 7.75,
|
3725 |
+
"eval_loss": 0.6887417435646057,
|
3726 |
+
"eval_runtime": 58.1651,
|
3727 |
+
"eval_samples_per_second": 3.438,
|
3728 |
+
"eval_steps_per_second": 0.43,
|
3729 |
+
"step": 248
|
3730 |
+
},
|
3731 |
+
{
|
3732 |
+
"epoch": 7.78125,
|
3733 |
+
"grad_norm": 0.9329951454150782,
|
3734 |
+
"learning_rate": 2e-05,
|
3735 |
+
"loss": 0.6434,
|
3736 |
+
"step": 249
|
3737 |
+
},
|
3738 |
+
{
|
3739 |
+
"epoch": 7.78125,
|
3740 |
+
"eval_loss": 0.6893429756164551,
|
3741 |
+
"eval_runtime": 58.4106,
|
3742 |
+
"eval_samples_per_second": 3.424,
|
3743 |
+
"eval_steps_per_second": 0.428,
|
3744 |
+
"step": 249
|
3745 |
+
},
|
3746 |
+
{
|
3747 |
+
"epoch": 7.8125,
|
3748 |
+
"grad_norm": 0.8799352767832798,
|
3749 |
+
"learning_rate": 2e-05,
|
3750 |
+
"loss": 0.6519,
|
3751 |
+
"step": 250
|
3752 |
+
},
|
3753 |
+
{
|
3754 |
+
"epoch": 7.8125,
|
3755 |
+
"eval_loss": 0.6929408311843872,
|
3756 |
+
"eval_runtime": 58.3105,
|
3757 |
+
"eval_samples_per_second": 3.43,
|
3758 |
+
"eval_steps_per_second": 0.429,
|
3759 |
+
"step": 250
|
3760 |
+
},
|
3761 |
+
{
|
3762 |
+
"epoch": 7.84375,
|
3763 |
+
"grad_norm": 0.9322996227983372,
|
3764 |
+
"learning_rate": 2e-05,
|
3765 |
+
"loss": 0.5684,
|
3766 |
+
"step": 251
|
3767 |
+
},
|
3768 |
+
{
|
3769 |
+
"epoch": 7.84375,
|
3770 |
+
"eval_loss": 0.6954038739204407,
|
3771 |
+
"eval_runtime": 57.8998,
|
3772 |
+
"eval_samples_per_second": 3.454,
|
3773 |
+
"eval_steps_per_second": 0.432,
|
3774 |
+
"step": 251
|
3775 |
+
},
|
3776 |
+
{
|
3777 |
+
"epoch": 7.875,
|
3778 |
+
"grad_norm": 1.0904651907324217,
|
3779 |
+
"learning_rate": 2e-05,
|
3780 |
+
"loss": 0.5851,
|
3781 |
+
"step": 252
|
3782 |
+
},
|
3783 |
+
{
|
3784 |
+
"epoch": 7.875,
|
3785 |
+
"eval_loss": 0.6938650012016296,
|
3786 |
+
"eval_runtime": 58.4905,
|
3787 |
+
"eval_samples_per_second": 3.419,
|
3788 |
+
"eval_steps_per_second": 0.427,
|
3789 |
+
"step": 252
|
3790 |
+
},
|
3791 |
+
{
|
3792 |
+
"epoch": 7.90625,
|
3793 |
+
"grad_norm": 1.0103592741616823,
|
3794 |
+
"learning_rate": 2e-05,
|
3795 |
+
"loss": 0.6655,
|
3796 |
+
"step": 253
|
3797 |
+
},
|
3798 |
+
{
|
3799 |
+
"epoch": 7.90625,
|
3800 |
+
"eval_loss": 0.6909225583076477,
|
3801 |
+
"eval_runtime": 58.1801,
|
3802 |
+
"eval_samples_per_second": 3.438,
|
3803 |
+
"eval_steps_per_second": 0.43,
|
3804 |
+
"step": 253
|
3805 |
+
},
|
3806 |
+
{
|
3807 |
+
"epoch": 7.9375,
|
3808 |
+
"grad_norm": 0.9208541649120607,
|
3809 |
+
"learning_rate": 2e-05,
|
3810 |
+
"loss": 0.6051,
|
3811 |
+
"step": 254
|
3812 |
+
},
|
3813 |
+
{
|
3814 |
+
"epoch": 7.9375,
|
3815 |
+
"eval_loss": 0.6913868188858032,
|
3816 |
+
"eval_runtime": 58.4224,
|
3817 |
+
"eval_samples_per_second": 3.423,
|
3818 |
+
"eval_steps_per_second": 0.428,
|
3819 |
+
"step": 254
|
3820 |
+
},
|
3821 |
+
{
|
3822 |
+
"epoch": 7.96875,
|
3823 |
+
"grad_norm": 0.9567638724372727,
|
3824 |
+
"learning_rate": 2e-05,
|
3825 |
+
"loss": 0.5529,
|
3826 |
+
"step": 255
|
3827 |
+
},
|
3828 |
+
{
|
3829 |
+
"epoch": 7.96875,
|
3830 |
+
"eval_loss": 0.6918243169784546,
|
3831 |
+
"eval_runtime": 58.1569,
|
3832 |
+
"eval_samples_per_second": 3.439,
|
3833 |
+
"eval_steps_per_second": 0.43,
|
3834 |
+
"step": 255
|
3835 |
+
},
|
3836 |
+
{
|
3837 |
+
"epoch": 8.0,
|
3838 |
+
"grad_norm": 0.8913592607849594,
|
3839 |
+
"learning_rate": 2e-05,
|
3840 |
+
"loss": 0.6076,
|
3841 |
+
"step": 256
|
3842 |
+
},
|
3843 |
+
{
|
3844 |
+
"epoch": 8.0,
|
3845 |
+
"eval_loss": 0.6921086311340332,
|
3846 |
+
"eval_runtime": 58.8193,
|
3847 |
+
"eval_samples_per_second": 3.4,
|
3848 |
+
"eval_steps_per_second": 0.425,
|
3849 |
+
"step": 256
|
3850 |
+
},
|
3851 |
+
{
|
3852 |
+
"epoch": 8.0,
|
3853 |
+
"step": 256,
|
3854 |
+
"total_flos": 77213396434944.0,
|
3855 |
+
"train_loss": 0.24315254529938102,
|
3856 |
+
"train_runtime": 7656.702,
|
3857 |
+
"train_samples_per_second": 1.045,
|
3858 |
+
"train_steps_per_second": 0.033
|
3859 |
+
}
|
3860 |
+
],
|
3861 |
+
"logging_steps": 1.0,
|
3862 |
+
"max_steps": 256,
|
3863 |
+
"num_input_tokens_seen": 0,
|
3864 |
+
"num_train_epochs": 8,
|
3865 |
+
"save_steps": 5,
|
3866 |
+
"stateful_callbacks": {
|
3867 |
+
"TrainerControl": {
|
3868 |
+
"args": {
|
3869 |
+
"should_epoch_stop": false,
|
3870 |
+
"should_evaluate": false,
|
3871 |
+
"should_log": false,
|
3872 |
+
"should_save": true,
|
3873 |
+
"should_training_stop": true
|
3874 |
+
},
|
3875 |
+
"attributes": {}
|
3876 |
+
}
|
3877 |
+
},
|
3878 |
+
"total_flos": 77213396434944.0,
|
3879 |
+
"train_batch_size": 16,
|
3880 |
+
"trial_name": null,
|
3881 |
+
"trial_params": null
|
3882 |
+
}
|