File size: 15,569 Bytes
e9959b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import torch
import torch.nn as nn
import torch.nn.functional as F
# Changelog since original version:
# xATGLU instead of top linear in transformer block
# Added a learned residual scale to all blocks and all residuals. This allowed bfloat16 training to stabilize, prior it was just exploding.
# This architecture was my attempt at the following Simple Diffusion paper with some modifications:
# https://arxiv.org/pdf/2410.19324v1
# Very similar to GeGLU or SwiGLU, there's a learned gate FN, uses arctan as the activation fn.
class xATGLU(nn.Module):
def __init__(self, input_dim, output_dim, bias=True):
super().__init__()
# GATE path | VALUE path
self.proj = nn.Linear(input_dim, output_dim * 2, bias=bias)
nn.init.kaiming_normal_(self.proj.weight, nonlinearity='linear')
self.alpha = nn.Parameter(torch.zeros(1))
self.half_pi = torch.pi / 2
self.inv_pi = 1 / torch.pi
def forward(self, x):
projected = self.proj(x)
gate_path, value_path = projected.chunk(2, dim=-1)
# Apply arctan gating with expanded range via learned alpha -- https://arxiv.org/pdf/2405.20768
gate = (torch.arctan(gate_path) + self.half_pi) * self.inv_pi
expanded_gate = gate * (1 + 2 * self.alpha) - self.alpha
return expanded_gate * value_path # g(x) × y
# Tensor product attention, modified. Original code from:
# https://github.com/tensorgi/T6/blob/main/model/T6_ropek.py
# https://arxiv.org/pdf/2501.06425
class CPLinear(nn.Module):
def __init__(self, in_features, n_head, head_dim, rank: int = 1, q_rank: int = 12):
super(CPLinear, self).__init__()
self.in_features = in_features
self.n_head = n_head
self.head_dim = head_dim
self.rank = rank
self.q_rank = q_rank
self.W_A_q = nn.Linear(in_features, n_head * q_rank, bias=False)
self.W_A_k = nn.Linear(in_features, n_head * rank, bias=False)
self.W_A_v = nn.Linear(in_features, n_head * rank, bias=False)
nn.init.xavier_normal_(self.W_A_q.weight)
nn.init.xavier_normal_(self.W_A_k.weight)
nn.init.xavier_normal_(self.W_A_v.weight)
self.W_B_q = nn.Linear(in_features, q_rank * head_dim, bias=False)
self.W_B_k = nn.Linear(in_features, rank * head_dim, bias=False)
self.W_B_v = nn.Linear(in_features, rank * head_dim, bias=False)
nn.init.xavier_normal_(self.W_B_q.weight)
nn.init.xavier_normal_(self.W_B_k.weight)
nn.init.xavier_normal_(self.W_B_v.weight)
def forward(self, x):
batch_size, seq_len, _ = x.size()
# A clarification on the naming, it's somewhat standard to call the two low rank matrices A and B, so I've followed that.
# Compute intermediate variables A for Q, K, and V
A_q = self.W_A_q(x).view(batch_size, seq_len, self.n_head, self.q_rank)
A_k = self.W_A_k(x).view(batch_size, seq_len, self.n_head, self.rank)
A_v = self.W_A_v(x).view(batch_size, seq_len, self.n_head, self.rank)
# Compute intermediate variables B for Q, K, and V
B_q = self.W_B_q(x).view(batch_size, seq_len, self.q_rank, self.head_dim)
B_k = self.W_B_k(x).view(batch_size, seq_len, self.rank, self.head_dim)
B_v = self.W_B_v(x).view(batch_size, seq_len, self.rank, self.head_dim)
# Reshape A_q, A_k, A_v
A_q = A_q.view(batch_size * seq_len, self.n_head, self.q_rank)
A_k = A_k.view(batch_size * seq_len, self.n_head, self.rank)
A_v = A_v.view(batch_size * seq_len, self.n_head, self.rank)
# Reshape B_k, B_v
B_q = B_q.view(batch_size * seq_len, self.q_rank, self.head_dim)
B_k = B_k.view(batch_size * seq_len, self.rank, self.head_dim)
B_v = B_v.view(batch_size * seq_len, self.rank, self.head_dim)
q = torch.bmm(A_q, B_q).div_(self.q_rank).view(batch_size, seq_len, self.n_head, self.head_dim)
k = torch.bmm(A_k, B_k).div_(self.rank).view(batch_size, seq_len, self.n_head, self.head_dim)
v = torch.bmm(A_v, B_v).div_(self.rank).view(batch_size, seq_len, self.n_head, self.head_dim)
return q, k, v
# Very possible this is not a good method for positional encoding in DiT, in fact it may be actively harmful. It does help in small datasets though.
# No positional embedding should be a serious consideration for high compute resources/large data scenarios.
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq).to(x.device)
self.cos_cached = freqs.cos().bfloat16()
self.sin_cached = freqs.sin().bfloat16()
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
def apply_rotary_emb(x, cos, sin):
assert x.ndim == 4 # multihead attention
d = x.shape[3] // 2
x1 = x[..., :d]
x2 = x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat([y1, y2], 3).type_as(x)
class TensorProductAttentionWithRope(nn.Module):
def __init__(self, n_head, head_dim, n_embd, kv_rank=2, q_rank=6):
super().__init__()
self.n_head = n_head
self.head_dim = head_dim
self.n_embd = n_embd
self.kv_rank = kv_rank
self.q_rank = q_rank
self.c_qkv = CPLinear(self.n_embd, self.n_head, self.head_dim, self.kv_rank, self.q_rank)
# Output projection. Bias seems sensible here, each head can learn a shift.
self.o_proj = xATGLU(self.n_head * self.head_dim, self.n_embd, bias=True)
# Not a layer, just a helper
self.rotary = Rotary(self.head_dim)
def forward(self, x):
B, T, C = x.size() # batch_size, seq_length (T), embedding_dim
# Get Q, K, V through CPLinear factorization
q, k, v = self.c_qkv(x) # Each shape: (B, T, n_head, head_dim)
cos, sin = self.rotary(q)
q = apply_rotary_emb(q, cos, sin)
k = apply_rotary_emb(k, cos, sin)
# SDPA expects (B, n_head, T, head_dim)
q = q.permute(0, 2, 1, 3) # batch seq heads dim -> batch heads seq dim
k = k.permute(0, 2, 1, 3) # batch seq heads dim -> batch heads seq dim
v = v.permute(0, 2, 1, 3) # batch seq heads dim -> batch heads seq dim
# Compute attention using scaled_dot_product_attention
y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
# Back to B T C
y = y.transpose(1, 2).flatten(2)
y = self.o_proj(y)
return y
class ResBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
self.norm1 = nn.GroupNorm(32, channels)
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
self.norm2 = nn.GroupNorm(32, channels)
self.learned_residual_scale = nn.Parameter(torch.ones(1) * 0.1)
def forward(self, x):
h = self.conv1(F.silu(self.norm1(x)))
h = self.conv2(F.silu(self.norm2(h)))
return x + h * self.learned_residual_scale
class TransformerBlock(nn.Module):
def __init__(self, channels, num_heads=8):
super().__init__()
self.norm1 = nn.LayerNorm(channels)
self.norm2 = nn.LayerNorm(channels)
# Params recommended by TPA paper, seem to work fine.
self.attn = TensorProductAttentionWithRope(
n_head=num_heads,
head_dim=channels // num_heads,
n_embd=channels,
kv_rank=2,
q_rank=6
)
self.mlp = nn.Sequential(
xATGLU(channels, 2 * channels, bias=False),
nn.Linear(2 * channels, channels, bias=False) # Candidate for a bias
)
self.learned_residual_scale_attn = nn.Parameter(torch.ones(1) * 0.1)
self.learned_residual_scale_mlp = nn.Parameter(torch.ones(1) * 0.1)
def forward(self, x):
# Input shape B C H W
b, c, h, w = x.shape
x = x.reshape(b, h * w, c) # [B, H*W, C]
# Pre-norm architecture, this was really helpful for network stability when using bf16
identity = x
x = self.norm1(x)
h_attn = self.attn(x)
#h_attn, _ = self.attn(x, x, x)
x = identity + h_attn * self.learned_residual_scale_attn
identity = x
x = self.norm2(x)
h_mlp = self.mlp(x)
x = identity + h_mlp * self.learned_residual_scale_mlp
# Reshape back to B C H W
x = x.permute(1, 2, 0).reshape(b, c, h, w)
return x
class LevelBlock(nn.Module):
def __init__(self, channels, num_blocks, block_type='res'):
super().__init__()
self.blocks = nn.ModuleList()
for _ in range(num_blocks):
if block_type == 'transformer':
self.blocks.append(TransformerBlock(channels))
else:
self.blocks.append(ResBlock(channels))
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class AsymmetricResidualUDiT(nn.Module):
def __init__(self,
in_channels=3, # Input color channels
base_channels=128, # Initial feature size, dramatically increases parameter size of network.
patch_size=2, # Smaller patches dramatically increases flops and compute expenses. Recommend >=4 unless you have real compute.
num_levels=3, # Feature downsample, essentially the unet depth -- so we down/upsample three times. Dramatically increases parameters as you increase.
encoder_blocks=3, # Can be different number of blocks VS decoder_blocks
decoder_blocks=7, # Can be different number of blocks VS encoder_blocks
encoder_transformer_thresh=2, #When to start using transformer blocks instead of res blocks in the encoder. (>=)
decoder_transformer_thresh=4, #When to stop using transformer blocks instead of res blocks in the decoder. (<=)
mid_blocks=16, # Number of middle transformer blocks. Relatively cheap as this is at the bottom of the unet feature bottleneck.
):
super().__init__()
self.learned_middle_residual_scale = nn.Parameter(torch.ones(1) * 0.1)
# Initial projection from image space
self.patch_embed = nn.Conv2d(in_channels, base_channels,
kernel_size=patch_size, stride=patch_size)
self.encoders = nn.ModuleList()
curr_channels = base_channels
for level in range(num_levels):
use_transformer = level >= encoder_transformer_thresh # Use transformers for latter levels
# Encoder blocks -- N = encoder_blocks
self.encoders.append(
LevelBlock(curr_channels, encoder_blocks, use_transformer)
)
# Each successive decoder halves the size of the feature space for each step, except for the last level.
if level < num_levels - 1:
self.encoders.append(
nn.Conv2d(curr_channels, curr_channels * 2, 1)
)
curr_channels *= 2
# Middle transformer blocks -- N = mid_blocks
self.middle = nn.ModuleList([
TransformerBlock(curr_channels) for _ in range(mid_blocks)
])
# Create decoder levels
self.decoders = nn.ModuleList()
for level in range(num_levels):
use_transformer = level <= decoder_transformer_thresh # Use transformers for early levels (inverse of encoder)
# Decoder blocks -- N = decoder_blocks
self.decoders.append(
LevelBlock(curr_channels, decoder_blocks, use_transformer)
)
# Each successive decoder halves the size of the feature space for each step, except for the last level.
if level < num_levels - 1:
self.decoders.append(
nn.Conv2d(curr_channels, curr_channels // 2, 1)
)
curr_channels //= 2
# Final projection back to image space
self.final_proj = nn.ConvTranspose2d(base_channels, in_channels,
kernel_size=patch_size, stride=patch_size)
def downsample(self, x):
return F.avg_pool2d(x, kernel_size=2)
def upsample(self, x):
return F.interpolate(x, scale_factor=2, mode='nearest')
def forward(self, x, t=None):
# x shape B C H W
# This patchifies our input, for example given an input shape like:
# From 2, 3, 256, 256
x = self.patch_embed(x)
# Our shape is now more channels and with smaller W and H
# To 2, 128, 64, 64
# *Per resolution e.g. per num_level resolution block more or less
# f(x) = fu( U(fm(D(h)) - D(h)) + h ) where h = fd(x)
#
# Where
# 1. h = fd(x) : Encoder path processes input
# 2. D(h) : Downsample the encoded features
# 3. fm(D(h)) : Middle transformer blocks process downsampled features
# 4. fm(D(h))-D(h): Subtract original downsampled features (residual connection)
# 5. U(...) : Upsample the processed features
# 6. ... + h : Add back original encoder features (skip connection)
# 7. fu(...) : Decoder path processes the combined features
residuals = []
curr_res = x
# Encoder path (computing h = fd(x))
h = x
for i, blocks in enumerate(self.encoders):
if isinstance(blocks, LevelBlock):
h = blocks(h)
else:
# Save residual before downsampling
residuals.append(curr_res)
# Downsample and update current residual
h = self.downsample(blocks(h))
curr_res = h
# Middle blocks (fm)
x = h
for block in self.middle:
x = block(x)
# Subtract the residual at this level (D(h))
x = x - curr_res * self.learned_middle_residual_scale
# Decoder path (fu)
for i, blocks in enumerate(self.decoders):
if isinstance(blocks, LevelBlock):
x = blocks(x)
else:
# Channel reduction
x = blocks(x)
# Upsample
x = self.upsample(x)
# Add residual from encoder at this level, LIFO, last residual added is the first we want, since it's this u-shape.
curr_res = residuals.pop()
x = x + curr_res * self.learned_middle_residual_scale
# Final projection
x = self.final_proj(x)
return x |