BlackNoodle commited on
Commit
438ea8c
·
1 Parent(s): d425b6c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.37 +/- 24.38
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6bba39670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6bba39700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6bba39790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6bba39820>", "_build": "<function ActorCriticPolicy._build at 0x7fe6bba398b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe6bba39940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6bba399d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6bba39a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe6bba39af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6bba39b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6bba39c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6bba39ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe6bba31960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673835989725409801, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1Lz73COZI/knrsvlB4K7+6m3m9qPtsvgAAAAAAAAAAMy/4O9wSLry+aLC6h+Q+PAvxkT2ipSG9AACAPwAAgD8aQJo92FadP25c7D70DSi/OvSSPTIChz4AAAAAAAAAAACAhjza3bc/91/APTOf4r1BhzM7RF6FPQAAAAAAAAAA83iLvWEO0z0rOUu8Okk2vlu2DL3qdKq8AAAAAAAAAACak6s8dkuyP1Xg7j15HYW+IuSJPOq2Kz0AAAAAAAAAADOiPb30Ifo9wsWjPcmJQ74IywY9yN3TvAAAAAAAAAAAM00wvJ0mJz57+mU8nKCLvscD77wd+BG+AAAAAAAAAACzl1S9FC7QuhJjNrvYSoY80aYCvDi3aT0AAIA/AACAP81FGL3RBPE9YB8PvvKJcr5jrT+8M52JuwAAAAAAAAAAjTXcvagxnz1OLhq94Et+vkVNyb2aUTE9AAAAAAAAAABmcDe9dSEPPmYq97ywB0O+nOFVPS4jPDwAAAAAAAAAADMGZb2ubZS6uE3dNi3T1DGmB8i6U6kAtgAAgD8AAIA/gEWKvqIu7T6e0F4+DDjmvs1Ulr4kF4c+AAAAAAAAAAAqKmq+zjTgvH9BxLuqdE+8L/Y9PmcFDr0AAIA/AACAP019nr1CUxU+gNz5PUKLb757KbQ9wxPNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICMiXUAE7c0CUhpRSlIwBbJRL/4wBdJRHQJBF8xdpqRF1fZQoaAZoCWgPQwhnmxvT01VxQJSGlFKUaBVL7mgWR0CQRqVLBbfQdX2UKGgGaAloD0MIZ/D3i1k/c0CUhpRSlGgVTYMBaBZHQJBG8B8x9G91fZQoaAZoCWgPQwhHVRNEXaBvQJSGlFKUaBVNAQFoFkdAkEhj987ZF3V9lChoBmgJaA9DCPw2xHjNO29AlIaUUpRoFU0QAWgWR0CQSNZc9nscdX2UKGgGaAloD0MIyLWhYhzNcECUhpRSlGgVTTIBaBZHQJBI0ZCOWB11fZQoaAZoCWgPQwi14hsKn09wQJSGlFKUaBVNOwFoFkdAkEkpJ9RaYHV9lChoBmgJaA9DCHfc8LspVXFAlIaUUpRoFU0qAWgWR0CQSSoTPBzndX2UKGgGaAloD0MIBHY1ecpqMECUhpRSlGgVS8loFkdAkEoweA/cFnV9lChoBmgJaA9DCDdQ4J08zXBAlIaUUpRoFU0rAWgWR0CQSsPyCnP3dX2UKGgGaAloD0MIB0Dc1etgcECUhpRSlGgVTQcBaBZHQJBK3RLK3d91fZQoaAZoCWgPQwgP1v85TO9vQJSGlFKUaBVNrAFoFkdAkEvcTrVvuXV9lChoBmgJaA9DCHufqkKDgm5AlIaUUpRoFU0pAWgWR0CQTCNc4YJmdX2UKGgGaAloD0MIQwQcQpX+b0CUhpRSlGgVTSgBaBZHQJBMfyNGViZ1fZQoaAZoCWgPQwj8xAH0O41wQJSGlFKUaBVL+WgWR0CQTUtKIznBdX2UKGgGaAloD0MIVwVqMTjCcUCUhpRSlGgVTX4BaBZHQJBNRhAnlXB1fZQoaAZoCWgPQwjD9L2GYMZuQJSGlFKUaBVNLwFoFkdAkE1qWszVMHV9lChoBmgJaA9DCLA5B89E5XFAlIaUUpRoFU0MAWgWR0CQTprKeTV2dX2UKGgGaAloD0MIMbWlDjJtcECUhpRSlGgVTSEBaBZHQJBO32Bas6t1fZQoaAZoCWgPQwgG2h1SDEFwQJSGlFKUaBVNCAFoFkdAkFBpFLFn7HV9lChoBmgJaA9DCNvcmJ4wp3FAlIaUUpRoFU0WAWgWR0CQUIdbPhQ4dX2UKGgGaAloD0MIYASNmUSzcECUhpRSlGgVTTkBaBZHQJBRM9fTkQx1fZQoaAZoCWgPQwjvPPGcbYhxQJSGlFKUaBVNSAFoFkdAkFIEvf0mMXV9lChoBmgJaA9DCCI17WKau3FAlIaUUpRoFU1NAWgWR0CQUodMCcPOdX2UKGgGaAloD0MI/fZ14JxubkCUhpRSlGgVTRkBaBZHQJBSsAT7EYR1fZQoaAZoCWgPQwgU6ukj8G9xQJSGlFKUaBVNNgFoFkdAkFN39WIXTHV9lChoBmgJaA9DCERssHASI29AlIaUUpRoFUvfaBZHQJBTru8brC51fZQoaAZoCWgPQwiMEvQXOhJwQJSGlFKUaBVNGgFoFkdAkFP/M0P6K3V9lChoBmgJaA9DCPX3UnjQE29AlIaUUpRoFU0RAWgWR0CQVBzSThYOdX2UKGgGaAloD0MIyeiAJGxUcUCUhpRSlGgVS/loFkdAkFRC8Fpwj3V9lChoBmgJaA9DCLt868O6oXBAlIaUUpRoFU0AAWgWR0CQVGjQAuIzdX2UKGgGaAloD0MI46YGmg+pcUCUhpRSlGgVS9VoFkdAkFSscp9ZzXV9lChoBmgJaA9DCADICRMGuXJAlIaUUpRoFU15AWgWR0CQVLlj3EhrdX2UKGgGaAloD0MIy/j3GdfOckCUhpRSlGgVTUYBaBZHQJBU0kLQXyl1fZQoaAZoCWgPQwge3nNgOQlxQJSGlFKUaBVL+2gWR0CQVaH6/IsAdX2UKGgGaAloD0MIe8GnObnicUCUhpRSlGgVTR0BaBZHQJBYPXnQpnZ1fZQoaAZoCWgPQwhH6dK/pL9yQJSGlFKUaBVNJgFoFkdAkFhp84Pwu3V9lChoBmgJaA9DCKysbYpHPHNAlIaUUpRoFUvwaBZHQJBYZgrpaA51fZQoaAZoCWgPQwioNGJm36FxQJSGlFKUaBVL5mgWR0CQWL2FWXC1dX2UKGgGaAloD0MIN091yA1ycUCUhpRSlGgVTSMBaBZHQJBrlVdX1ap1fZQoaAZoCWgPQwgfLGNDN1FIQJSGlFKUaBVLtGgWR0CQa9NxVAAydX2UKGgGaAloD0MI1PIDVzkbcECUhpRSlGgVTRIBaBZHQJBtQzhxYJV1fZQoaAZoCWgPQwhpNSTucaNyQJSGlFKUaBVL6GgWR0CQbXmBe5WjdX2UKGgGaAloD0MIlfPF3guPa0CUhpRSlGgVTQkBaBZHQJBtt1aGHpN1fZQoaAZoCWgPQwiHFW75iClwQJSGlFKUaBVNEQFoFkdAkG3Uf9xZMnV9lChoBmgJaA9DCHkhHR5CR3BAlIaUUpRoFU0bAWgWR0CQbc8CgbqAdX2UKGgGaAloD0MIHTwTmuQRcECUhpRSlGgVTQkBaBZHQJBt4yk9ECx1fZQoaAZoCWgPQwhX7ZqQ1lpvQJSGlFKUaBVNZQFoFkdAkG61SflIVnV9lChoBmgJaA9DCGMpkq9Eo3FAlIaUUpRoFU0hAWgWR0CQbxHmzSkTdX2UKGgGaAloD0MIkEsceSD0cECUhpRSlGgVTRABaBZHQJBvuKl54W11fZQoaAZoCWgPQwhBKsWORqNwQJSGlFKUaBVNXgFoFkdAkHAkRWcSXnV9lChoBmgJaA9DCKMjufxHMnBAlIaUUpRoFUviaBZHQJBw38uSOip1fZQoaAZoCWgPQwjdlV0wOMVwQJSGlFKUaBVL6mgWR0CQcdmaYu01dX2UKGgGaAloD0MIZhGKreBhcECUhpRSlGgVTQIBaBZHQJBx2s6q8151fZQoaAZoCWgPQwjBGmfTUURwQJSGlFKUaBVNFwFoFkdAkHJp6yB063V9lChoBmgJaA9DCBR6/Um8i3BAlIaUUpRoFU0UAWgWR0CQcpZH/cWTdX2UKGgGaAloD0MI/8pKk5LJcECUhpRSlGgVTQ4BaBZHQJBy9F+d9Ul1fZQoaAZoCWgPQwgSiNf1yz5xQJSGlFKUaBVL4GgWR0CQcwJMQEpzdX2UKGgGaAloD0MI766zIf9oc0CUhpRSlGgVS+JoFkdAkHNW2G7Bf3V9lChoBmgJaA9DCJtUNNb+MnJAlIaUUpRoFU0GAWgWR0CQdFcHGCI2dX2UKGgGaAloD0MIK6G7JM5rbECUhpRSlGgVS+FoFkdAkHS3BYV6/3V9lChoBmgJaA9DCLPuHwvR0UlAlIaUUpRoFUujaBZHQJB1D7VJ+Uh1fZQoaAZoCWgPQwiQ+YBA59ttQJSGlFKUaBVNLgFoFkdAkHUrowEhaHV9lChoBmgJaA9DCKQ33Edu0HBAlIaUUpRoFU0jAWgWR0CQdiTuv2XcdX2UKGgGaAloD0MILLmKxW/gcUCUhpRSlGgVTUwBaBZHQJB2Wn5zo2Z1fZQoaAZoCWgPQwg49BYPrzNwQJSGlFKUaBVNGQFoFkdAkHbv6XSjQHV9lChoBmgJaA9DCAYP0745fHBAlIaUUpRoFU0yAWgWR0CQeB4yGi5/dX2UKGgGaAloD0MIw2fr4KAZcUCUhpRSlGgVTQgBaBZHQJB42qEOAiF1fZQoaAZoCWgPQwjlKha/acZxQJSGlFKUaBVNBgFoFkdAkHmthd+ocnV9lChoBmgJaA9DCO3WMhlODnBAlIaUUpRoFU0OAWgWR0CQebdlNDc/dX2UKGgGaAloD0MIKQXdXhJ/cECUhpRSlGgVTTEBaBZHQJB6Fgtvn8t1fZQoaAZoCWgPQwijdOlfkv5DQJSGlFKUaBVLvGgWR0CQemAj6eoUdX2UKGgGaAloD0MITrfsEP9LcECUhpRSlGgVTRABaBZHQJB6fO9nK4h1fZQoaAZoCWgPQwhrEOZ2b+VyQJSGlFKUaBVNFwFoFkdAkHqhrSE123V9lChoBmgJaA9DCOAqTyDsWXBAlIaUUpRoFU0gAWgWR0CQe09mHxjKdX2UKGgGaAloD0MIW+z2WeUubkCUhpRSlGgVS/xoFkdAkHtpAyEcsHV9lChoBmgJaA9DCPSJPEm6MElAlIaUUpRoFUupaBZHQJB7sxxkupV1fZQoaAZoCWgPQwhQGmoUksNwQJSGlFKUaBVL8mgWR0CQe+UpuuRtdX2UKGgGaAloD0MITMYxkr3/cUCUhpRSlGgVS9VoFkdAkHw4q9XcQHV9lChoBmgJaA9DCCkg7X+AVlNAlIaUUpRoFUvpaBZHQJB8gbHZK4B1fZQoaAZoCWgPQwjedwyPPcpyQJSGlFKUaBVNUAFoFkdAkH3QkC3gDXV9lChoBmgJaA9DCOdxGMzfbG5AlIaUUpRoFUvtaBZHQJB+bGHYYix1fZQoaAZoCWgPQwjk3CbcK4ZwQJSGlFKUaBVL/GgWR0CQf4LKV6eHdX2UKGgGaAloD0MIsrj/yPQJb0CUhpRSlGgVS+RoFkdAkH+g/X5FgHV9lChoBmgJaA9DCJEJ+DWSWnBAlIaUUpRoFUv7aBZHQJCAQ+mm+Cd1fZQoaAZoCWgPQwgYQs77/11wQJSGlFKUaBVL+2gWR0CQgKoTfzjFdX2UKGgGaAloD0MIryR5rq9Ac0CUhpRSlGgVS9loFkdAkIFoN3GGVXV9lChoBmgJaA9DCHbgnBFlM3BAlIaUUpRoFU0YAWgWR0CQgcm4RVZLdX2UKGgGaAloD0MI1EhL5W1FcECUhpRSlGgVS/poFkdAkIHysjmjkHV9lChoBmgJaA9DCJ+vWS4blnNAlIaUUpRoFUvVaBZHQJCB8aFVT751fZQoaAZoCWgPQwgMsmX5uu9yQJSGlFKUaBVL8WgWR0CQgklVcUuddX2UKGgGaAloD0MIcjEG1jGmckCUhpRSlGgVTSUBaBZHQJCCXkU9IPN1fZQoaAZoCWgPQwgMIHwo0d5xQJSGlFKUaBVNDQFoFkdAkIKDUI9kjHV9lChoBmgJaA9DCDwwgPDh9nFAlIaUUpRoFUvnaBZHQJCCrWmP5pJ1fZQoaAZoCWgPQwiWl/xPftFyQJSGlFKUaBVNQgFoFkdAkILprYXfqHV9lChoBmgJaA9DCFvPEI7Z6mxAlIaUUpRoFUviaBZHQJCEUc+7lJZ1fZQoaAZoCWgPQwhafuAqT8pwQJSGlFKUaBVNNwFoFkdAkIYJdB0IT3V9lChoBmgJaA9DCAPrOH6o629AlIaUUpRoFUv0aBZHQJCGFzIV/MJ1fZQoaAZoCWgPQwg6eCY0SepTQJSGlFKUaBVLpmgWR0CQhiYhdMTOdX2UKGgGaAloD0MIdVq3Qe39bUCUhpRSlGgVS+FoFkdAkIYvxtpEhXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8eee374b67b69d16201eb17eb57ea7e0eb9978d0ee5c6780c38f9c4a5d957b5
3
+ size 147376
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe6bba39670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe6bba39700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe6bba39790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe6bba39820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe6bba398b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe6bba39940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe6bba399d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe6bba39a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe6bba39af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe6bba39b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe6bba39c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe6bba39ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe6bba31960>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673835989725409801,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1Lz73COZI/knrsvlB4K7+6m3m9qPtsvgAAAAAAAAAAMy/4O9wSLry+aLC6h+Q+PAvxkT2ipSG9AACAPwAAgD8aQJo92FadP25c7D70DSi/OvSSPTIChz4AAAAAAAAAAACAhjza3bc/91/APTOf4r1BhzM7RF6FPQAAAAAAAAAA83iLvWEO0z0rOUu8Okk2vlu2DL3qdKq8AAAAAAAAAACak6s8dkuyP1Xg7j15HYW+IuSJPOq2Kz0AAAAAAAAAADOiPb30Ifo9wsWjPcmJQ74IywY9yN3TvAAAAAAAAAAAM00wvJ0mJz57+mU8nKCLvscD77wd+BG+AAAAAAAAAACzl1S9FC7QuhJjNrvYSoY80aYCvDi3aT0AAIA/AACAP81FGL3RBPE9YB8PvvKJcr5jrT+8M52JuwAAAAAAAAAAjTXcvagxnz1OLhq94Et+vkVNyb2aUTE9AAAAAAAAAABmcDe9dSEPPmYq97ywB0O+nOFVPS4jPDwAAAAAAAAAADMGZb2ubZS6uE3dNi3T1DGmB8i6U6kAtgAAgD8AAIA/gEWKvqIu7T6e0F4+DDjmvs1Ulr4kF4c+AAAAAAAAAAAqKmq+zjTgvH9BxLuqdE+8L/Y9PmcFDr0AAIA/AACAP019nr1CUxU+gNz5PUKLb757KbQ9wxPNvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVWxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICMiXUAE7c0CUhpRSlIwBbJRL/4wBdJRHQJBF8xdpqRF1fZQoaAZoCWgPQwhnmxvT01VxQJSGlFKUaBVL7mgWR0CQRqVLBbfQdX2UKGgGaAloD0MIZ/D3i1k/c0CUhpRSlGgVTYMBaBZHQJBG8B8x9G91fZQoaAZoCWgPQwhHVRNEXaBvQJSGlFKUaBVNAQFoFkdAkEhj987ZF3V9lChoBmgJaA9DCPw2xHjNO29AlIaUUpRoFU0QAWgWR0CQSNZc9nscdX2UKGgGaAloD0MIyLWhYhzNcECUhpRSlGgVTTIBaBZHQJBI0ZCOWB11fZQoaAZoCWgPQwi14hsKn09wQJSGlFKUaBVNOwFoFkdAkEkpJ9RaYHV9lChoBmgJaA9DCHfc8LspVXFAlIaUUpRoFU0qAWgWR0CQSSoTPBzndX2UKGgGaAloD0MIBHY1ecpqMECUhpRSlGgVS8loFkdAkEoweA/cFnV9lChoBmgJaA9DCDdQ4J08zXBAlIaUUpRoFU0rAWgWR0CQSsPyCnP3dX2UKGgGaAloD0MIB0Dc1etgcECUhpRSlGgVTQcBaBZHQJBK3RLK3d91fZQoaAZoCWgPQwgP1v85TO9vQJSGlFKUaBVNrAFoFkdAkEvcTrVvuXV9lChoBmgJaA9DCHufqkKDgm5AlIaUUpRoFU0pAWgWR0CQTCNc4YJmdX2UKGgGaAloD0MIQwQcQpX+b0CUhpRSlGgVTSgBaBZHQJBMfyNGViZ1fZQoaAZoCWgPQwj8xAH0O41wQJSGlFKUaBVL+WgWR0CQTUtKIznBdX2UKGgGaAloD0MIVwVqMTjCcUCUhpRSlGgVTX4BaBZHQJBNRhAnlXB1fZQoaAZoCWgPQwjD9L2GYMZuQJSGlFKUaBVNLwFoFkdAkE1qWszVMHV9lChoBmgJaA9DCLA5B89E5XFAlIaUUpRoFU0MAWgWR0CQTprKeTV2dX2UKGgGaAloD0MIMbWlDjJtcECUhpRSlGgVTSEBaBZHQJBO32Bas6t1fZQoaAZoCWgPQwgG2h1SDEFwQJSGlFKUaBVNCAFoFkdAkFBpFLFn7HV9lChoBmgJaA9DCNvcmJ4wp3FAlIaUUpRoFU0WAWgWR0CQUIdbPhQ4dX2UKGgGaAloD0MIYASNmUSzcECUhpRSlGgVTTkBaBZHQJBRM9fTkQx1fZQoaAZoCWgPQwjvPPGcbYhxQJSGlFKUaBVNSAFoFkdAkFIEvf0mMXV9lChoBmgJaA9DCCI17WKau3FAlIaUUpRoFU1NAWgWR0CQUodMCcPOdX2UKGgGaAloD0MI/fZ14JxubkCUhpRSlGgVTRkBaBZHQJBSsAT7EYR1fZQoaAZoCWgPQwgU6ukj8G9xQJSGlFKUaBVNNgFoFkdAkFN39WIXTHV9lChoBmgJaA9DCERssHASI29AlIaUUpRoFUvfaBZHQJBTru8brC51fZQoaAZoCWgPQwiMEvQXOhJwQJSGlFKUaBVNGgFoFkdAkFP/M0P6K3V9lChoBmgJaA9DCPX3UnjQE29AlIaUUpRoFU0RAWgWR0CQVBzSThYOdX2UKGgGaAloD0MIyeiAJGxUcUCUhpRSlGgVS/loFkdAkFRC8Fpwj3V9lChoBmgJaA9DCLt868O6oXBAlIaUUpRoFU0AAWgWR0CQVGjQAuIzdX2UKGgGaAloD0MI46YGmg+pcUCUhpRSlGgVS9VoFkdAkFSscp9ZzXV9lChoBmgJaA9DCADICRMGuXJAlIaUUpRoFU15AWgWR0CQVLlj3EhrdX2UKGgGaAloD0MIy/j3GdfOckCUhpRSlGgVTUYBaBZHQJBU0kLQXyl1fZQoaAZoCWgPQwge3nNgOQlxQJSGlFKUaBVL+2gWR0CQVaH6/IsAdX2UKGgGaAloD0MIe8GnObnicUCUhpRSlGgVTR0BaBZHQJBYPXnQpnZ1fZQoaAZoCWgPQwhH6dK/pL9yQJSGlFKUaBVNJgFoFkdAkFhp84Pwu3V9lChoBmgJaA9DCKysbYpHPHNAlIaUUpRoFUvwaBZHQJBYZgrpaA51fZQoaAZoCWgPQwioNGJm36FxQJSGlFKUaBVL5mgWR0CQWL2FWXC1dX2UKGgGaAloD0MIN091yA1ycUCUhpRSlGgVTSMBaBZHQJBrlVdX1ap1fZQoaAZoCWgPQwgfLGNDN1FIQJSGlFKUaBVLtGgWR0CQa9NxVAAydX2UKGgGaAloD0MI1PIDVzkbcECUhpRSlGgVTRIBaBZHQJBtQzhxYJV1fZQoaAZoCWgPQwhpNSTucaNyQJSGlFKUaBVL6GgWR0CQbXmBe5WjdX2UKGgGaAloD0MIlfPF3guPa0CUhpRSlGgVTQkBaBZHQJBtt1aGHpN1fZQoaAZoCWgPQwiHFW75iClwQJSGlFKUaBVNEQFoFkdAkG3Uf9xZMnV9lChoBmgJaA9DCHkhHR5CR3BAlIaUUpRoFU0bAWgWR0CQbc8CgbqAdX2UKGgGaAloD0MIHTwTmuQRcECUhpRSlGgVTQkBaBZHQJBt4yk9ECx1fZQoaAZoCWgPQwhX7ZqQ1lpvQJSGlFKUaBVNZQFoFkdAkG61SflIVnV9lChoBmgJaA9DCGMpkq9Eo3FAlIaUUpRoFU0hAWgWR0CQbxHmzSkTdX2UKGgGaAloD0MIkEsceSD0cECUhpRSlGgVTRABaBZHQJBvuKl54W11fZQoaAZoCWgPQwhBKsWORqNwQJSGlFKUaBVNXgFoFkdAkHAkRWcSXnV9lChoBmgJaA9DCKMjufxHMnBAlIaUUpRoFUviaBZHQJBw38uSOip1fZQoaAZoCWgPQwjdlV0wOMVwQJSGlFKUaBVL6mgWR0CQcdmaYu01dX2UKGgGaAloD0MIZhGKreBhcECUhpRSlGgVTQIBaBZHQJBx2s6q8151fZQoaAZoCWgPQwjBGmfTUURwQJSGlFKUaBVNFwFoFkdAkHJp6yB063V9lChoBmgJaA9DCBR6/Um8i3BAlIaUUpRoFU0UAWgWR0CQcpZH/cWTdX2UKGgGaAloD0MI/8pKk5LJcECUhpRSlGgVTQ4BaBZHQJBy9F+d9Ul1fZQoaAZoCWgPQwgSiNf1yz5xQJSGlFKUaBVL4GgWR0CQcwJMQEpzdX2UKGgGaAloD0MI766zIf9oc0CUhpRSlGgVS+JoFkdAkHNW2G7Bf3V9lChoBmgJaA9DCJtUNNb+MnJAlIaUUpRoFU0GAWgWR0CQdFcHGCI2dX2UKGgGaAloD0MIK6G7JM5rbECUhpRSlGgVS+FoFkdAkHS3BYV6/3V9lChoBmgJaA9DCLPuHwvR0UlAlIaUUpRoFUujaBZHQJB1D7VJ+Uh1fZQoaAZoCWgPQwiQ+YBA59ttQJSGlFKUaBVNLgFoFkdAkHUrowEhaHV9lChoBmgJaA9DCKQ33Edu0HBAlIaUUpRoFU0jAWgWR0CQdiTuv2XcdX2UKGgGaAloD0MILLmKxW/gcUCUhpRSlGgVTUwBaBZHQJB2Wn5zo2Z1fZQoaAZoCWgPQwg49BYPrzNwQJSGlFKUaBVNGQFoFkdAkHbv6XSjQHV9lChoBmgJaA9DCAYP0745fHBAlIaUUpRoFU0yAWgWR0CQeB4yGi5/dX2UKGgGaAloD0MIw2fr4KAZcUCUhpRSlGgVTQgBaBZHQJB42qEOAiF1fZQoaAZoCWgPQwjlKha/acZxQJSGlFKUaBVNBgFoFkdAkHmthd+ocnV9lChoBmgJaA9DCO3WMhlODnBAlIaUUpRoFU0OAWgWR0CQebdlNDc/dX2UKGgGaAloD0MIKQXdXhJ/cECUhpRSlGgVTTEBaBZHQJB6Fgtvn8t1fZQoaAZoCWgPQwijdOlfkv5DQJSGlFKUaBVLvGgWR0CQemAj6eoUdX2UKGgGaAloD0MITrfsEP9LcECUhpRSlGgVTRABaBZHQJB6fO9nK4h1fZQoaAZoCWgPQwhrEOZ2b+VyQJSGlFKUaBVNFwFoFkdAkHqhrSE123V9lChoBmgJaA9DCOAqTyDsWXBAlIaUUpRoFU0gAWgWR0CQe09mHxjKdX2UKGgGaAloD0MIW+z2WeUubkCUhpRSlGgVS/xoFkdAkHtpAyEcsHV9lChoBmgJaA9DCPSJPEm6MElAlIaUUpRoFUupaBZHQJB7sxxkupV1fZQoaAZoCWgPQwhQGmoUksNwQJSGlFKUaBVL8mgWR0CQe+UpuuRtdX2UKGgGaAloD0MITMYxkr3/cUCUhpRSlGgVS9VoFkdAkHw4q9XcQHV9lChoBmgJaA9DCCkg7X+AVlNAlIaUUpRoFUvpaBZHQJB8gbHZK4B1fZQoaAZoCWgPQwjedwyPPcpyQJSGlFKUaBVNUAFoFkdAkH3QkC3gDXV9lChoBmgJaA9DCOdxGMzfbG5AlIaUUpRoFUvtaBZHQJB+bGHYYix1fZQoaAZoCWgPQwjk3CbcK4ZwQJSGlFKUaBVL/GgWR0CQf4LKV6eHdX2UKGgGaAloD0MIsrj/yPQJb0CUhpRSlGgVS+RoFkdAkH+g/X5FgHV9lChoBmgJaA9DCJEJ+DWSWnBAlIaUUpRoFUv7aBZHQJCAQ+mm+Cd1fZQoaAZoCWgPQwgYQs77/11wQJSGlFKUaBVL+2gWR0CQgKoTfzjFdX2UKGgGaAloD0MIryR5rq9Ac0CUhpRSlGgVS9loFkdAkIFoN3GGVXV9lChoBmgJaA9DCHbgnBFlM3BAlIaUUpRoFU0YAWgWR0CQgcm4RVZLdX2UKGgGaAloD0MI1EhL5W1FcECUhpRSlGgVS/poFkdAkIHysjmjkHV9lChoBmgJaA9DCJ+vWS4blnNAlIaUUpRoFUvVaBZHQJCB8aFVT751fZQoaAZoCWgPQwgMsmX5uu9yQJSGlFKUaBVL8WgWR0CQgklVcUuddX2UKGgGaAloD0MIcjEG1jGmckCUhpRSlGgVTSUBaBZHQJCCXkU9IPN1fZQoaAZoCWgPQwgMIHwo0d5xQJSGlFKUaBVNDQFoFkdAkIKDUI9kjHV9lChoBmgJaA9DCDwwgPDh9nFAlIaUUpRoFUvnaBZHQJCCrWmP5pJ1fZQoaAZoCWgPQwiWl/xPftFyQJSGlFKUaBVNQgFoFkdAkILprYXfqHV9lChoBmgJaA9DCFvPEI7Z6mxAlIaUUpRoFUviaBZHQJCEUc+7lJZ1fZQoaAZoCWgPQwhafuAqT8pwQJSGlFKUaBVNNwFoFkdAkIYJdB0IT3V9lChoBmgJaA9DCAPrOH6o629AlIaUUpRoFUv0aBZHQJCGFzIV/MJ1fZQoaAZoCWgPQwg6eCY0SepTQJSGlFKUaBVLpmgWR0CQhiYhdMTOdX2UKGgGaAloD0MIdVq3Qe39bUCUhpRSlGgVS+FoFkdAkIYvxtpEhXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:add92848df33a241bb00f056c39470bdd1456aefe25b3209dc3986b4632cc0e9
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a18860c20477f6d618245d51c5b6df4d77bb4896860a4e03a471324ad0d4218
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (223 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.37374513464084, "std_reward": 24.38138170060723, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T02:48:25.420227"}