--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-65-fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8591549295774648 --- # beit-base-patch16-224-65-fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5711 - Accuracy: 0.8592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 0.8549 | 0.5211 | | No log | 1.8462 | 6 | 0.6976 | 0.5634 | | No log | 2.7692 | 9 | 0.6809 | 0.5634 | | 0.7778 | 4.0 | 13 | 0.6459 | 0.6056 | | 0.7778 | 4.9231 | 16 | 0.6353 | 0.6338 | | 0.7778 | 5.8462 | 19 | 0.6141 | 0.6197 | | 0.6542 | 6.7692 | 22 | 0.6003 | 0.6056 | | 0.6542 | 8.0 | 26 | 0.6168 | 0.6761 | | 0.6542 | 8.9231 | 29 | 0.5781 | 0.6901 | | 0.5817 | 9.8462 | 32 | 0.5710 | 0.7324 | | 0.5817 | 10.7692 | 35 | 0.5345 | 0.7465 | | 0.5817 | 12.0 | 39 | 0.6058 | 0.6479 | | 0.513 | 12.9231 | 42 | 0.6433 | 0.7042 | | 0.513 | 13.8462 | 45 | 0.5830 | 0.7042 | | 0.513 | 14.7692 | 48 | 0.6167 | 0.7042 | | 0.4756 | 16.0 | 52 | 0.7304 | 0.6338 | | 0.4756 | 16.9231 | 55 | 0.5485 | 0.7606 | | 0.4756 | 17.8462 | 58 | 0.5166 | 0.7606 | | 0.4123 | 18.7692 | 61 | 0.6267 | 0.7746 | | 0.4123 | 20.0 | 65 | 0.4253 | 0.8169 | | 0.4123 | 20.9231 | 68 | 0.4698 | 0.7746 | | 0.3745 | 21.8462 | 71 | 0.5312 | 0.7887 | | 0.3745 | 22.7692 | 74 | 0.5158 | 0.7465 | | 0.3745 | 24.0 | 78 | 0.5969 | 0.8028 | | 0.3751 | 24.9231 | 81 | 0.5419 | 0.7606 | | 0.3751 | 25.8462 | 84 | 0.4630 | 0.8028 | | 0.3751 | 26.7692 | 87 | 0.5367 | 0.8028 | | 0.3079 | 28.0 | 91 | 0.5220 | 0.8310 | | 0.3079 | 28.9231 | 94 | 0.5342 | 0.7887 | | 0.3079 | 29.8462 | 97 | 0.5711 | 0.8592 | | 0.2831 | 30.7692 | 100 | 0.5757 | 0.7606 | | 0.2831 | 32.0 | 104 | 0.5200 | 0.7465 | | 0.2831 | 32.9231 | 107 | 0.4496 | 0.8451 | | 0.292 | 33.8462 | 110 | 0.6480 | 0.8169 | | 0.292 | 34.7692 | 113 | 0.6956 | 0.7465 | | 0.292 | 36.0 | 117 | 0.5629 | 0.8169 | | 0.2712 | 36.9231 | 120 | 0.7614 | 0.6901 | | 0.2712 | 37.8462 | 123 | 0.5625 | 0.8028 | | 0.2712 | 38.7692 | 126 | 0.5711 | 0.7746 | | 0.2447 | 40.0 | 130 | 0.5476 | 0.7746 | | 0.2447 | 40.9231 | 133 | 0.5354 | 0.8028 | | 0.2447 | 41.8462 | 136 | 0.5217 | 0.8169 | | 0.2447 | 42.7692 | 139 | 0.5767 | 0.8028 | | 0.185 | 44.0 | 143 | 0.5606 | 0.8169 | | 0.185 | 44.9231 | 146 | 0.6719 | 0.7887 | | 0.185 | 45.8462 | 149 | 0.6074 | 0.7887 | | 0.1921 | 46.7692 | 152 | 0.6351 | 0.7746 | | 0.1921 | 48.0 | 156 | 0.5916 | 0.7746 | | 0.1921 | 48.9231 | 159 | 0.6103 | 0.7887 | | 0.1844 | 49.8462 | 162 | 0.5758 | 0.7887 | | 0.1844 | 50.7692 | 165 | 0.5497 | 0.8169 | | 0.1844 | 52.0 | 169 | 0.5377 | 0.8310 | | 0.17 | 52.9231 | 172 | 0.6279 | 0.8169 | | 0.17 | 53.8462 | 175 | 0.5826 | 0.7887 | | 0.17 | 54.7692 | 178 | 0.7173 | 0.7746 | | 0.1724 | 56.0 | 182 | 0.5340 | 0.8451 | | 0.1724 | 56.9231 | 185 | 0.5528 | 0.8592 | | 0.1724 | 57.8462 | 188 | 0.6547 | 0.7887 | | 0.1734 | 58.7692 | 191 | 0.5986 | 0.8310 | | 0.1734 | 60.0 | 195 | 0.6057 | 0.8028 | | 0.1734 | 60.9231 | 198 | 0.7183 | 0.8028 | | 0.1582 | 61.8462 | 201 | 0.5912 | 0.8169 | | 0.1582 | 62.7692 | 204 | 0.6002 | 0.8028 | | 0.1582 | 64.0 | 208 | 0.7886 | 0.7606 | | 0.1372 | 64.9231 | 211 | 0.7019 | 0.7887 | | 0.1372 | 65.8462 | 214 | 0.6460 | 0.8169 | | 0.1372 | 66.7692 | 217 | 0.6935 | 0.8028 | | 0.153 | 68.0 | 221 | 0.8108 | 0.7746 | | 0.153 | 68.9231 | 224 | 0.7539 | 0.7887 | | 0.153 | 69.8462 | 227 | 0.7090 | 0.7746 | | 0.1512 | 70.7692 | 230 | 0.7147 | 0.7887 | | 0.1512 | 72.0 | 234 | 0.8680 | 0.8028 | | 0.1512 | 72.9231 | 237 | 0.8785 | 0.7887 | | 0.1381 | 73.8462 | 240 | 0.7413 | 0.7887 | | 0.1381 | 74.7692 | 243 | 0.7255 | 0.8169 | | 0.1381 | 76.0 | 247 | 0.7124 | 0.7887 | | 0.1432 | 76.9231 | 250 | 0.7343 | 0.8028 | | 0.1432 | 77.8462 | 253 | 0.7404 | 0.8028 | | 0.1432 | 78.7692 | 256 | 0.6941 | 0.7887 | | 0.1135 | 80.0 | 260 | 0.6721 | 0.8310 | | 0.1135 | 80.9231 | 263 | 0.6692 | 0.8310 | | 0.1135 | 81.8462 | 266 | 0.6880 | 0.8028 | | 0.1135 | 82.7692 | 269 | 0.6857 | 0.8028 | | 0.1182 | 84.0 | 273 | 0.6850 | 0.7887 | | 0.1182 | 84.9231 | 276 | 0.6816 | 0.7887 | | 0.1182 | 85.8462 | 279 | 0.7048 | 0.7746 | | 0.1019 | 86.7692 | 282 | 0.7804 | 0.7746 | | 0.1019 | 88.0 | 286 | 0.8013 | 0.7746 | | 0.1019 | 88.9231 | 289 | 0.7506 | 0.7606 | | 0.1163 | 89.8462 | 292 | 0.7047 | 0.7746 | | 0.1163 | 90.7692 | 295 | 0.6763 | 0.8028 | | 0.1163 | 92.0 | 299 | 0.6606 | 0.8028 | | 0.1258 | 92.3077 | 300 | 0.6592 | 0.8028 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1