PereLluis13
commited on
Commit
·
6adc0b1
1
Parent(s):
3945ccb
Update README.md
Browse files
README.md
CHANGED
@@ -42,16 +42,18 @@ license: cc-by-nc-sa-4.0
|
|
42 |
|
43 |
This is the model card for the Findings of EMNLP 2021 paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). We present a new linearization aproach and a reframing of Relation Extraction as a seq2seq task. The paper can be found [here](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). If you use the code, please reference this work in your paper:
|
44 |
|
45 |
-
@inproceedings{huguet-cabot-navigli-2021-rebel,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
}
|
56 |
|
57 |
The original repository for the paper can be found [here](https://github.com/Babelscape/rebel)
|
|
|
42 |
|
43 |
This is the model card for the Findings of EMNLP 2021 paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). We present a new linearization aproach and a reframing of Relation Extraction as a seq2seq task. The paper can be found [here](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). If you use the code, please reference this work in your paper:
|
44 |
|
45 |
+
@inproceedings{huguet-cabot-navigli-2021-rebel-relation,
|
46 |
+
title = "{REBEL}: Relation Extraction By End-to-end Language generation",
|
47 |
+
author = "Huguet Cabot, Pere-Llu{\'\i}s and
|
48 |
+
Navigli, Roberto",
|
49 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
50 |
+
month = nov,
|
51 |
+
year = "2021",
|
52 |
+
address = "Punta Cana, Dominican Republic",
|
53 |
+
publisher = "Association for Computational Linguistics",
|
54 |
+
url = "https://aclanthology.org/2021.findings-emnlp.204",
|
55 |
+
pages = "2370--2381",
|
56 |
+
abstract = "Extracting relation triplets from raw text is a crucial task in Information Extraction, enabling multiple applications such as populating or validating knowledge bases, factchecking, and other downstream tasks. However, it usually involves multiple-step pipelines that propagate errors or are limited to a small number of relation types. To overcome these issues, we propose the use of autoregressive seq2seq models. Such models have previously been shown to perform well not only in language generation, but also in NLU tasks such as Entity Linking, thanks to their framing as seq2seq tasks. In this paper, we show how Relation Extraction can be simplified by expressing triplets as a sequence of text and we present REBEL, a seq2seq model based on BART that performs end-to-end relation extraction for more than 200 different relation types. We show our model{'}s flexibility by fine-tuning it on an array of Relation Extraction and Relation Classification benchmarks, with it attaining state-of-the-art performance in most of them.",
|
57 |
}
|
58 |
|
59 |
The original repository for the paper can be found [here](https://github.com/Babelscape/rebel)
|