Update README.md
Browse files
README.md
CHANGED
@@ -134,7 +134,141 @@ The accelerated partition is composed of 1,120 nodes with the following specific
|
|
134 |
|
135 |
## How to use
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
---
|
140 |
|
|
|
134 |
|
135 |
## How to use
|
136 |
|
137 |
+
### Inference
|
138 |
+
This section covers different methods for running inference, including utilizing Huggingface's Text Generation Pipeline, multi-GPU setups, and vLLM for efficient and scalable generation. Each approach is accompanied by step-by-step instructions to ensure a smooth setup.
|
139 |
+
|
140 |
+
#### Inference with Huggingface's Text Generation Pipeline
|
141 |
+
The Huggingface Text Generation Pipeline provides a simple and straightforward way to run inference using the Salamandra-7b model.
|
142 |
+
|
143 |
+
```bash
|
144 |
+
pip install -U transformers
|
145 |
+
```
|
146 |
+
<details>
|
147 |
+
<summary>Show code</summary>
|
148 |
+
|
149 |
+
```python
|
150 |
+
from transformers import pipeline, set_seed
|
151 |
+
|
152 |
+
model_id = "projecte-aina/salamandra-7b"
|
153 |
+
|
154 |
+
# Sample prompts
|
155 |
+
prompts = [
|
156 |
+
"Las fiestas de San Isidro Labrador de Yecla son",
|
157 |
+
"El punt més alt del Parc Natural del Montseny és",
|
158 |
+
"Sentence in English: The typical chance of such a storm is around 10%. Sentence in Catalan:",
|
159 |
+
"Si le monde était clair",
|
160 |
+
"The future of AI is",
|
161 |
+
]
|
162 |
+
|
163 |
+
# Create the pipeline
|
164 |
+
generator = pipeline("text-generation", model_id, device_map="auto")
|
165 |
+
generation_args = {
|
166 |
+
"temperature": 0.1,
|
167 |
+
"top_p": 0.95,
|
168 |
+
"max_new_tokens": 25,
|
169 |
+
"repetition_penalty": 1.2,
|
170 |
+
"do_sample": True
|
171 |
+
}
|
172 |
+
|
173 |
+
# Fix the seed
|
174 |
+
set_seed(1)
|
175 |
+
# Generate texts
|
176 |
+
outputs = generator(prompts, **generation_args)
|
177 |
+
# Print outputs
|
178 |
+
for output in outputs:
|
179 |
+
print(output[0]["generated_text"])
|
180 |
+
|
181 |
+
```
|
182 |
+
</details>
|
183 |
+
|
184 |
+
#### Inference with single / multi GPU
|
185 |
+
Inference code for Huggingface’s AutoModel.
|
186 |
+
|
187 |
+
```bash
|
188 |
+
pip install transformers torch accelerate sentencepiece protobuf
|
189 |
+
```
|
190 |
+
|
191 |
+
<details>
|
192 |
+
<summary>Show code</summary>
|
193 |
+
|
194 |
+
```python
|
195 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
196 |
+
import torch
|
197 |
+
|
198 |
+
model_id = "projecte-aina/salamandra-7b"
|
199 |
+
|
200 |
+
# Input text
|
201 |
+
text = "El mercat del barri és"
|
202 |
+
|
203 |
+
# Load the tokenizer
|
204 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
205 |
+
# Load the model
|
206 |
+
model = AutoModelForCausalLM.from_pretrained(
|
207 |
+
model_id,
|
208 |
+
device_map="auto",
|
209 |
+
torch_dtype=torch.bfloat16
|
210 |
+
)
|
211 |
+
|
212 |
+
generation_args = {
|
213 |
+
"temperature": 0.1,
|
214 |
+
"top_p": 0.95,
|
215 |
+
"max_new_tokens": 25,
|
216 |
+
"repetition_penalty": 1.2,
|
217 |
+
"do_sample": True
|
218 |
+
}
|
219 |
+
|
220 |
+
inputs = tokenizer(text, return_tensors="pt")
|
221 |
+
# Generate texts
|
222 |
+
output = model.generate(input_ids=inputs["input_ids"].to(model.device), attention_mask=inputs["attention_mask"], **generation_args)
|
223 |
+
# Print outputs
|
224 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
225 |
+
```
|
226 |
+
|
227 |
+
</details>
|
228 |
+
|
229 |
+
#### Inference with vLLM
|
230 |
+
vLLM is an efficient library for inference that enables faster and more scalable text generation.
|
231 |
+
|
232 |
+
```bash
|
233 |
+
pip install vllm
|
234 |
+
```
|
235 |
+
|
236 |
+
<details>
|
237 |
+
<summary>Show code</summary>
|
238 |
+
|
239 |
+
```python
|
240 |
+
from vllm import LLM, SamplingParams
|
241 |
+
|
242 |
+
model_id = "projecte-aina/salamandra-7b"
|
243 |
+
|
244 |
+
# Sample prompts
|
245 |
+
prompts = [
|
246 |
+
"Las fiestas de San Isidro Labrador de Yecla son",
|
247 |
+
"El punt més alt del Parc Natural del Montseny és",
|
248 |
+
"Sentence in English: The typical chance of such a storm is around 10%. Sentence in Catalan:",
|
249 |
+
"Si le monde était clair",
|
250 |
+
"The future of AI is",
|
251 |
+
]
|
252 |
+
# Create a sampling params object
|
253 |
+
sampling_params = SamplingParams(
|
254 |
+
temperature=0.1,
|
255 |
+
top_p=0.95,
|
256 |
+
seed=1,
|
257 |
+
max_tokens=25,
|
258 |
+
repetition_penalty=1.2)
|
259 |
+
|
260 |
+
# Create an LLM
|
261 |
+
llm = LLM(model=model_id)
|
262 |
+
# Generate texts
|
263 |
+
outputs = llm.generate(prompts, sampling_params)
|
264 |
+
# Print outputs
|
265 |
+
for output in outputs:
|
266 |
+
prompt = output.prompt
|
267 |
+
generated_text = output.outputs[0].text
|
268 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
269 |
+
```
|
270 |
+
|
271 |
+
</details>
|
272 |
|
273 |
---
|
274 |
|