File size: 82,899 Bytes
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e0fda
630cacb
 
 
 
 
 
 
 
 
 
 
3d1336e
 
630cacb
 
 
 
 
 
e5ddb39
 
630cacb
 
 
 
51a0190
91fa45d
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
e5ddb39
630cacb
 
 
 
91fa45d
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77ddccb
630cacb
 
 
 
 
 
 
 
 
 
 
 
91fa45d
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
5137c6e
 
 
 
 
 
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c18e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63951cf
5c18e6d
 
63951cf
5c18e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630cacb
910b07a
 
630cacb
 
 
 
 
 
 
 
 
 
 
 
31cd62a
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e5d49
 
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369f4ed
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fb7f42
630cacb
 
 
a3bd347
 
f2341ce
a3bd347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
931d5ff
a3bd347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e31ec7
a3bd347
 
 
 
 
 
 
 
 
 
6e31ec7
a3bd347
 
 
 
6e31ec7
a3bd347
 
 
 
6e31ec7
a3bd347
 
 
 
6e31ec7
a3bd347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
931d5ff
a3bd347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574f5be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630cacb
4fb7f42
 
630cacb
 
 
 
cca9f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630cacb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98881b5
630cacb
 
 
 
1e61e7a
 
 
 
 
 
 
 
 
630cacb
 
 
 
 
 
 
 
 
 
1e61e7a
 
630cacb
 
 
 
 
 
 
91fa45d
 
3d1336e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
---
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
language:
- bg
- ca
- code
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fi
- fr
- ga
- gl
- hr
- hu
- it
- lt
- lv
- mt
- nl
- nn
- \no
- oc
- pl
- pt
- ro
- ru
- sh
- sk
- sl
- sr
- sv
- uk
base_model:
- BSC-LT/salamandra-7b
---

![](./images/salamandra_header.png)

# Salamandra Model Card

Salamandra is a highly multilingual model pre-trained from scratch that comes in three different 
sizes — 2B, 7B and 40B parameters — with their respective base and instruction-tuned variants. 
This model card corresponds to the 7B instructed version.

To visit the model cards of other Salamandra versions, please refer to the [Model Index](#model-index).

The entire Salamandra family is released under a permissive [Apache 2.0 license]((https://www.apache.org/licenses/LICENSE-2.0)).
Along with the open weights, all training scripts and configuration files are made publicly available in [this GitHub repository](https://github.com/langtech-bsc/salamandra).

> [!WARNING]
> **DISCLAIMER:** This model is a first proof-of-concept designed to demonstrate the instruction-following capabilities of recently released base models.
> It has been optimized to engage in conversation but has *NOT* been aligned through RLHF to filter or avoid sensitive topics.
> As a result, it may generate harmful or inappropriate content.
> The team is actively working to enhance its performance through further instruction and alignment with RL techniques.

---

## Model Details

### Description

Transformer-based decoder-only language model that has been pre-trained from scratch on 7.8 trillion tokens of highly curated data.
The pre-training corpus contains text in 35 European languages and code.

### Hyperparameters

The full list of hyperparameters for each model can be found [here](https://github.com/langtech-bsc/salamandra/tree/main/configs).

### Architecture

|                         |               |
|-------------------------|:--------------|
| Total Parameters        | 7,768,117,248 |
| Embedding Parameters    | 1,048,576,000 |
| Layers                  | 32            |
| Hidden size             | 4,096         |
| Attention heads         | 32            |
| Context length          | 8,192         |
| Vocabulary size         | 256,000       |
| Precision               | bfloat16      |
| Embedding type          | RoPE          |
| Activation Function     | SwiGLU        |
| Layer normalization     | RMS Norm      |
| Flash attention         | ✅            |
| Grouped Query Attention | ✅            |
| Num. query groups       | 8             |

---

## Intended Use

### Direct Use

The models are intended for both research and commercial use in any of the languages included in the training data. 
The base models are intended either for language generation or to be further fine-tuned for specific use-cases. 
The instruction-tuned variants can be used as general-purpose assistants, as long as the user is fully aware of the model’s limitations.

### Out-of-scope Use

The model is not intended for malicious activities, such as harming others or violating human rights. 
Any downstream application must comply with current laws and regulations. 
Irresponsible usage in production environments without proper risk assessment and mitigation is also discouraged. 

---

## Hardware and Software

### Training Framework

Pre-training was conducted using NVIDIA’s [NeMo Framework](https://docs.nvidia.com/nemo-framework/index.html), 
which leverages PyTorch Lightning for efficient model training in highly distributed settings.

The instruction-tuned versions were produced with [FastChat](https://github.com/lm-sys/FastChat).

### Compute Infrastructure

All models were trained on [MareNostrum 5](https://www.bsc.es/ca/marenostrum/marenostrum-5), a pre-exascale EuroHPC supercomputer hosted and
operated by Barcelona Supercomputing Center.

The accelerated partition is composed of 1,120 nodes with the following specifications:
- 4x Nvidia Hopper GPUs with 64 HBM2 memory
- 2x Intel Sapphire Rapids 8460Y+ at 2.3Ghz and 32c each (64 cores)
- 4x NDR200 (BW per node 800Gb/s)
- 512 GB of Main memory (DDR5)
- 460GB on NVMe storage

|Model|Nodes|GPUs|
|:---:|:---:|:---:|
|2B|64|256|
|7B|128|512|
|40B|256 / 512|1,024 / 2,048|

---

## How to use

The instruction-following models use the commonly adopted ChatML template:

```jinja
{%- if not date_string is defined %}{%- set date_string = "2024-09-30" %}{%- endif %}{%- set system_message = messages[0].content if messages[0].role == "system" else "system message. Today Date: "+ date_string -%}{%- if messages[0].role == "system" -%}{%- set messages = messages[1:] -%}{%- endif -%}{{ "<|im_start|>system\n" + system_message + "<|im_end|>\n" }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}
```
Where `system_message` is used to guide the model during generation and `date_string` can be set to allow the model to respond with the current date.

The exact same chat template should be used for an enhanced conversational experience.
The easiest way to apply it is by using the tokenizer's built-in functions, as shown in the following snippet.

```python
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_id = "BSC-LT/salamandra-7b-instruct"

text = "At what temperature does water boil?"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16
  )

message = [ { "role": "user", "content": text } ]
date_string = datetime.today().strftime('%Y-%m-%d')

prompt = tokenizer.apply_chat_template(
    message,
    tokenize=False,
    add_generation_prompt=True,
    date_string=date_string
)

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=200)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Using this template, each turn is preceded by a `<|im_start|>` delimiter and the role of the entity 
(either `user`, for content supplied by the user, or `assistant` for LLM responses), and finished with the `<|im_end|>` token.

---

## Data

### Pretraining Data

The training corpus consists of 2.4 trillion tokens, including 35 European languages and 92 programming languages. It amounts to a total of 33TB of pre-processed text. 
Languages were sampled manually by giving x2 oversampling to Spain's co-official languages (Spanish, Catalan, Galician and Basque), code was undersampled by half, 
and the rest of the languages were kept as is, resulting in the following distribution:

![lang distrib](./images/corpus_languages.png)

This highly multilingual corpus is predominantly composed of data from Colossal OSCAR, 
which contributes a significant 66.06% of the total tokens. 
Following this, Starcoder provides 11.91%, and Spanish Crawling adds 3.34%. 
The next largest sources are French FR at 3.12% and Proof Pile at 1.98%. 
Other notable contributions include Macocu, Pile of Law, and Eurlex, each contributing around 1.5% to 1.3%. 
These major sources collectively form the bulk of the corpus, ensuring a rich and diverse dataset for training the language model.
The remaining 10% comes from smaller sources in various languages.

Feel free to click the expand button below to see the full list of sources.

<details>
<summary>Data Sources</summary>
  
| Dataset                                       | Language                                                                                                      | Source                                                                                              |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Parlamint corpus                              | at, bg, cz, dk, ee, es, es-ga, fi, fr, gb, gr, hr, hu, it, lv, nl, no, pl, pt, rs, se, si                      | Erjavec et al., 2021                                                                                |
| Bulgarian National Corpus                     | bg                                                                                                            | [Link](http://old.dcl.bas.bg/dataset/BulNC.7z)                                                       |
| Crawl of Bulgarian news websites              | bg                                                                                                            | [Link](http://old.dcl.bas.bg/dataset/Bulgarian_news.7z)                                              |
| Colossal OSCAR 1.0                            | bg, ca, cs, cy, da, de, el, en, es, et, eu, fi, fr, ga, gl, hr, hu, it, lt, lv, mt, nl, nn, no, oc, pl, pt, ro, ru, sh, sk, sl, sr, sv, uk | Brack et al., 2024                                                                                   |
| Wikimedia dumps                               | bg, ca, cs, da, de, el, en, es, et, eu, fi, fr, ga, gl, hr, hu, it, lt, lv, mt, nl, nn, no, pl, pt, ro, sh, sk, sl, sr, uk | [Link](https://dumps.wikimedia.org/)                                                                 |
| OpenSubtitlesv2016                            | bg, ca, cs, da, de, el, en, es, et, eu, fi, fr, gl, hr, it, lt, lv, nl, no, pl, pt, ro, sk, sl, sr, sv, uk      | Lison & Tiedemann, 2016                                                                             |
| MaCoCu web corpus                             | bg, ca, el, hr, mt, sl, sr, uk                                                                                 | Bañón et al., 2022                                                                                  |
| EurLEX-Resources                              | bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv                  | [Link](https://huggingface.co/datasets/joelniklaus/eurlex_resources)                                |
| MC4-Legal                                     | bg, cs, da, de, el, en, es, et, fi, fr, ga, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv                      | [Link](https://huggingface.co/datasets/joelito/legal-mc4)                                            |
| CURLICAT Corpus                               | bg, hr, hu, pl, ro, sk, sl                                                                                     | Váradi et al., 2022                                                                                 |
| CATalog                                       | ca                                                                                                            | Palomar-Giner et al., 2024                                                                          |
| Spanish Crawling                              | ca, es, eu, gl                                                                                                 | Relevant Spanish websites crawling                                                                  |
| Starcoder                                     | code                                                                                                          | Li et al., 2023                                                                                     |
| SYN v9: large corpus of written Czech         | cs                                                                                                            | Křen et al., 2021                                                                                   |
| Welsh-GOV                                     | cy                                                                                                            | Crawling from [Link](https://www.llyw.cymru)                                                         |
| DaNewsroom                                    | da                                                                                                            | Varab & Schluter, 2020                                                                              |
| Danish GigaWord                               | da                                                                                                            | Strømberg-Derczynski et al., 2021                                                                   |
| DK-CLARIN Reference Corpus of General Danish  | da                                                                                                            | [Link](https://korpus.dsl.dk/clarin/)                                                                |
| The Danish Parliament Corpus 2009 - 2017, v1  | da                                                                                                            | Hansen, 2018                                                                                        |
| DeWaC                                         | de                                                                                                            | [Link](https://docs.sslmit.unibo.it/doku.php?id=corpora:dewac)                                       |
| Open Legal Data - German court decisions and laws | de                                                                                                          | Ostendorff et al., 2020                                                                             |
| Greek Legal Code                              | el                                                                                                            | Papaloukas et al., 2021                                                                             |
| Greek Web Corpus                              | el                                                                                                            | Outsios et al., 2018                                                                                |
| Auxiliary Mathematics Problems and Solutions (AMPS) dataset | en                                                                                                         | Hendrycks et al., 2021                                                                              |
| BIGPATENT                                     | en                                                                                                            | Sharma et al., 2019                                                                                 |
| FineWeb-Edu (350BT subset)                    | en                                                                                                            | Penedo et al., 2024                                                                                 |
| peS2o                                         | en                                                                                                            | Soldaini & Lo, 2023                                                                                 |
| PG-19                                         | en                                                                                                            | Rae et al., 2019                                                                                    |
| Pile of Law (selected subsets)                | en                                                                                                            | Henderson* et al., 2022                                                                             |
| proof-pile                                    | en                                                                                                            | [Link](https://huggingface.co/datasets/hoskinson-center/proof-pile)                                  |
| RedPajama-Data T1 (StackExchange subset)      | en                                                                                                            | Computer, 2023                                                                                      |
| The Pile (PhilPapers subset)                  | en                                                                                                            | Gao et al., 2021                                                                                    |
| Biomedical                                    | es                                                                                                            | Internally generated scientific dataset: Wikipedia LS, Pubmed, MeSpEn, patents, clinical cases, medical crawler |
| HPLTDatasets v1 - Spanish                     | es                                                                                                            | de Gibert et al., 2024                                                                              |
| Legal                                         | es                                                                                                            | Internally generated legal dataset: BOE, BORME, Senado, Congreso, Spanish court orders, DOGC         |
| Scientific                                    | es                                                                                                            | Internally generated scientific dataset: Dialnet, Scielo, CSIC, TDX, BSC, UCM |
| Spanish Legal Domain Corpora                  | es                                                                                                            | Gutiérrez-Fandiño et al., 2021                                                                      |
| Estonian National Corpus 2021                 | et                                                                                                            | Koppel & Kallas, 2022                                                                               |
| Estonian Reference Corpus                     | et                                                                                                            | [Link](https://www.cl.ut.ee/korpused/segakorpus/)                                                    |
| EusCrawl (w/o Wikipedia or NC-licenses)       | eu                                                                                                            | Artetxe et al., 2022                                                                                |
| Latxa Corpus v1.1                             | eu                                                                                                            | Etxaniz et al., 2024 [Link](https://huggingface.co/datasets/HiTZ/latxa-corpus-v1.1)                  |
| Aya Dataset (w/o Evaluation Suite)            | eu, hr, nl, fi, ka, hu, lt, nn, ro, sk, lv, cy, bg, cs, en, fr, de, ga, mt, pl, ru, sl, sv, ca, da, et, gl, el, it, no, pt, sr, es, uk | Singh et al., 2024 |
| Yle Finnish News Archive                      | fi                                                                                                            | [Link](http://urn.fi/urn:nbn:fi:lb-2021050401)                                                       |
| CaBeRnet: a New French Balanced Reference Corpus | fr                                                                                                         | Popa-Fabre et al., 2020                                                                             |
| French Public Domain Books                    | fr                                                                                                            | [Link](https://huggingface.co/datasets/PleIAs/French-PD-Books)                                       |
| French Public Domain Newspapers               | fr                                                                                                            | [Link](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers)                                  |
| Irish Universal Dependencies                  | ga                                                                                                            | [Link](https://universaldependencies.org/ga/index.html)                                              |
| The Gaois bilingual corpus of English-Irish legislation (Irish legislation) | ga                                                                                                         | [Link](https://portulanclarin.net/repository/browse/the-gaois-bilingual-corpus-of-english-irish-legislation-processed/daeac17c9e3511ea9b7f02420a000407b83de243dc0b469aab41084386c5b80f/) |
| CorpusNÓS                                     | gl                                                                                                            | de-Dios-Flores et al., 2024                                                                         |
| Croatian web corpus hrWaC 2.1                 | hr                                                                                                            | Ljubešić & Klubička, 2014                                                                           |
| ITWaC                                         | it                                                                                                            | [Link](https://docs.sslmit.unibo.it/doku.php?id=corpora:itwac)                                       |
| Corpus of State-related content from the Latvian Web (Processed) | lv                                                                                                         | [Link](https://catalog.elra.info/en-us/repository/browse/ELRA-W0169/)                                |
| Korpus Malti                                  | mt                                                                                                            | Micallef et al., 2022                                                                               |
| SoNaR Corpus NC 1.2                           | nl                                                                                                            | [Link](https://taalmaterialen.ivdnt.org/download/tstc-sonar-corpus/)                                 |
| Norwegian Colossal Corpus                     | nn, no                                                                                                        | Kummervold et al., 2021                                                                             |
| Occitan Corpus                                | oc                                                                                                            | Provided by [IEA](https://www.institutestudisaranesi.cat/)                                           |
| NKJP-PodkorpusMilionowy-1.2 (National Corpus of Polish) | pl                                                                                                         | Lewandowska-Tomaszczyk et al., 2013                                                                  |
| Polish Parliamentary Corpus / Korpus Dyskursu Parlamentarnego | pl                                                                                                         | Ogrodniczuk, 2018                                                                                   |
| Brazilian Portuguese Web as Corpus            | pt                                                                                                            | Wagner Filho et al., 2018                                                                           |
| ParlamentoPT                                  | pt                                                                                                            | Rodrigues et al., 2023                                                                              |
| MARCELL Romanian legislative subcorpus v2     | ro                                                                                                            | [Link](https://elrc-share.eu/reposMARCELL%20Romanian%20legislative%20subcorpus%20v2itory/browse/marcell-romanian-legislative-subcorpus-v2/2da548428b9d11eb9c1a00155d026706ce94a6b59ffc4b0e9fb5cd9cebe6889e/) |
| Korpus slovenských právnych predpisov v1.9    | sk                                                                                                            | [Link](https://www.juls.savba.sk/data/marcell/legal-sk-20220322-1.9.ver.xz)                          |
| od-justice 2.0                                | sk                                                                                                            | [Link](https://www.juls.savba.sk/data/od-justice/od-justice-2.0.ver.xz)                              |
| Corpus of academic Slovene KAS 2.0            | sl                                                                                                            | Žagar et al., 2022                                                                                  |
| slWaC web corpus                              | sl                                                                                                            | Erjavec et al., 2015                                                                                |
| SrpKorSubset (news, legal, academic, conversation, literary) | sr                                                                                                         | [Link](http://www.korpus.matf.bg.ac.rs/)                                                             |
| The Swedish Culturomics Gigaword Corpus       | sv                                                                                                            | Rødven-Eide, 2016                                                                                   |
| Corpus of laws and legal acts of Ukraine      | uk                                                                                                            | [Link](https://lang.org.ua/en/corpora/#anchor7)                                                      |

To consult the data summary document with the respective licences, please send an e-mail to [email protected]. 

<details>
<summary>References</summary>

- Abadji, J., Suárez, P. J. O., Romary, L., & Sagot, B. (2021). Ungoliant: An optimized pipeline for the generation of a very large-scale multilingual web corpus (H. Lüngen, M. Kupietz, P. Bański, A. Barbaresi, S. Clematide, & I. Pisetta, Eds.; pp. 1–9). Leibniz-Institut für Deutsche Sprache. [Link](https://doi.org/10.14618/ids-pub-10468)
- Artetxe, M., Aldabe, I., Agerri, R., Perez-de-Viñaspre, O., & Soroa, A. (2022). Does Corpus Quality Really Matter for Low-Resource Languages?
- Bañón, M., Esplà-Gomis, M., Forcada, M. L., García-Romero, C., Kuzman, T., Ljubešić, N., van Noord, R., Sempere, L. P., Ramírez-Sánchez, G., Rupnik, P., Suchomel, V., Toral, A., van der Werff, T., & Zaragoza, J. (2022). MaCoCu: Massive collection and curation of monolingual and bilingual data: Focus on under-resourced languages. Proceedings of the 23rd Annual Conference of the European Association for Machine Translation, 303–304. [Link](https://aclanthology.org/2022.eamt-1.41)
- Brack, M., Ostendorff, M., Suarez, P. O., Saiz, J. J., Castilla, I. L., Palomar-Giner, J., Shvets, A., Schramowski, P., Rehm, G., Villegas, M., & Kersting, K. (2024). Community OSCAR: A Community Effort for Multilingual Web Data. [Link](https://occiglot.eu/papers/Community_Oscar.pdf)
- Computer, T. (2023). RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset [Computer software]. [Link](https://github.com/togethercomputer/RedPajama-Data)
- de Gibert, O., Nail, G., Arefyev, N., Bañón, M., van der Linde, J., Ji, S., Zaragoza-Bernabeu, J., Aulamo, M., Ramírez-Sánchez, G., Kutuzov, A., Pyysalo, S., Oepen, S., & Tiedemann, J. (2024). A New Massive Multilingual Dataset for High-Performance Language Technologies (arXiv:2403.14009). arXiv. [Link](http://arxiv.org/abs/2403.14009)
- Dodge, J., Sap, M., Marasović, A., Agnew, W., Ilharco, G., Groeneveld, D., Mitchell, M., & Gardner, M. (2021). Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus. In M.-F. Moens, X. Huang, L. Specia, & S. W. Yih (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 1286–1305). Association for Computational Linguistics. [Link](https://doi.org/10.18653/v1/2021.emnlp-main.98)
- Erjavec, T., Ljubešić, N., & Logar, N. (2015). The slWaC corpus of the Slovene web. Informatica (Slovenia), 39, 35–42.
- Erjavec, T., Ogrodniczuk, M., Osenova, P., Ljubešić, N., Simov, K., Grigorova, V., Rudolf, M., Pančur, A., Kopp, M., Barkarson, S., Steingrímsson, S. hór, van der Pol, H., Depoorter, G., de Does, J., Jongejan, B., Haltrup Hansen, D., Navarretta, C., Calzada Pérez, M., de Macedo, L. D., … Rayson, P. (2021). Linguistically annotated multilingual comparable corpora of parliamentary debates ParlaMint.ana 2.1. [Link](http://hdl.handle.net/11356/1431)
- Etxaniz, J., Sainz, O., Perez, N., Aldabe, I., Rigau, G., Agirre, E., Ormazabal, A., Artetxe, M., & Soroa, A. (2024). Latxa: An Open Language Model and Evaluation Suite for Basque. [Link] (https://arxiv.org/abs/2403.20266)
- Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., Presser, S., & Leahy, C. (2021). The Pile: An 800GB Dataset of Diverse Text for Language Modeling. CoRR, abs/2101.00027. [Link](https://arxiv.org/abs/2101.00027)
- Gutiérrez-Fandiño, A., Armengol-Estapé, J., Gonzalez-Agirre, A., & Villegas, M. (2021). Spanish Legalese Language Model and Corpora.
- Hansen, D. H. (2018). The Danish Parliament Corpus 2009—2017, v1. [Link](http://hdl.handle.net/20.500.12115/8)
- Henderson*, P., Krass*, M. S., Zheng, L., Guha, N., Manning, C. D., Jurafsky, D., & Ho, D. E. (2022). Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset. arXiv. [Link](https://arxiv.org/abs/2207.00220)
- Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset. NeurIPS.
- Jansen, T., Tong, Y., Zevallos, V., & Suarez, P. O. (2022). Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content Detection in Multilingual Heterogeneous Web Data.
- Koppel, K., & Kallas, J. (2022). Eesti keele ühendkorpuste sari 2013–2021: Mahukaim eestikeelsete digitekstide kogu. Eesti Rakenduslingvistika Ühingu Aastaraamat Estonian Papers in Applied Linguistics, 18, 207–228. [Link](https://doi.org/10.5128/erya18.12)
- Křen, M., Cvrček, V., Henyš, J., Hnátková, M., Jelínek, T., Kocek, J., Kováříková, D., Křivan, J., Milička, J., Petkevič, V., Procházka, P., Skoumalová, H., Šindlerová, J., & Škrabal, M. (2021). SYN v9: Large corpus of written Czech. [Link](http://hdl.handle.net/11234/1-4635)
- Kreutzer, J., Caswell, I., Wang, L., Wahab, A., van Esch, D., Ulzii-Orshikh, N., Tapo, A., Subramani, N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S., Samb, S., Sagot, B., Rivera, C., Rios, A., Papadimitriou, I., Osei, S., Suarez, P. O., … Adeyemi, M. (2022). Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets. Transactions of the Association for Computational Linguistics, 10, 50–72. [Link](https://doi.org/10.1162/tacl_a_00447)
- Kummervold, P. E., De la Rosa, J., Wetjen, F., & Brygfjeld, S. A. (2021). Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model. In S. Dobnik & L. Øvrelid (Eds.), Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa) (pp. 20–29). Linköping University Electronic Press, Sweden. [Link](https://aclanthology.org/2021.nodalida-main.3)
- Lewandowska-Tomaszczyk, B., Górski, R., Łaziński, M., & Przepiórkowski, A. (2013). The National Corpus of Polish (NKJP). Language use and data analysis. 309–319.
- Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., … Vries, H. de. (2023). StarCoder: May the source be with you!
- Lison, P., & Tiedemann, J. (2016). OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16) (pp. 923–929). European Language Resources Association (ELRA). [Link](https://aclanthology.org/L16-1147)
- Ljubešić, N., & Klubička, F. (2014). Bs,hr,srWaC - Web Corpora of Bosnian, Croatian and Serbian. In F. Bildhauer & R. Schäfer (Eds.), Proceedings of the 9th Web as Corpus Workshop (WaC-9) (pp. 29–35). Association for Computational Linguistics. [Link](https://doi.org/10.3115/v1/W14-0405)
- Micallef, K., Gatt, A., Tanti, M., van der Plas, L., & Borg, C. (2022). Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese. Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, 90–101. [Link](https://doi.org/10.18653/v1/2022.deeplo-1.10)
- Ogrodniczuk, M. (2018). Polish Parliamentary Corpus. [Link](https://api.semanticscholar.org/CorpusID:235134113)
- Ostendorff, M., Blume, T., & Ostendorff, S. (2020). Towards an Open Platform for Legal Information. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, 385–388. [Link](https://doi.org/10.1145/3383583.3398616)
- Ostendorff, M., Suarez, P. O., Lage, L. F., & Rehm, G. (2024). LLM-Datasets: An Open Framework for Pretraining Datasets of Large Language Models. First Conference on Language Modeling. [Link](https://openreview.net/forum?id=5RdIMlGLXL)
- Outsios, S., Skianis, K., Meladianos, P., Xypolopoulos, C., & Vazirgiannis, M. (2018). Word Embeddings from Large-Scale Greek Web content. arXiv Preprint arXiv:1810.06694.
- Palomar-Giner, J., Saiz, J. J., Espuña, F., Mina, M., Da Dalt, S., Llop, J., Ostendorff, M., Ortiz Suarez, P., Rehm, G., Gonzalez-Agirre, A., & Villegas, M. (2024). A CURATEd CATalog: Rethinking the Extraction of Pretraining Corpora for Mid-Resourced Languages. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 335–349). ELRA and ICCL. [Link](https://aclanthology.org/2024.lrec-main.31)
- Papaloukas, C., Chalkidis, I., Athinaios, K., Pantazi, D.-A., & Koubarakis, M. (2021). Multi-granular Legal Topic Classification on Greek Legislation. Proceedings of the Natural Legal Language Processing Workshop 2021, 63–75. [Link](https://doi.org/10.48550/arXiv.2109.15298)
- Popa-Fabre, M., Ortiz Suárez, P. J., Sagot, B., & de la Clergerie, É. (2020). French Contextualized Word-Embeddings with a sip of CaBeRnet: A New French Balanced Reference Corpus. Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora, 15–23. [Link](https://aclanthology.org/2020.cmlc-1.3)
- Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., & Lillicrap, T. P. (2019). Compressive Transformers for Long-Range Sequence Modelling. arXiv Preprint. [Link](https://arxiv.org/abs/1911.05507)
- Rodrigues, J., Gomes, L., Silva, J., Branco, A., Santos, R., Cardoso, H. L., & Osório, T. (2023). Advancing Neural Encoding of Portuguese with Transformer Albertina PT-\*.
- Rødven-Eide, S. (2016). The Swedish Culturomics Gigaword CorpusThe Swedish Culturomics Gigaword Corpus [Dataset]. Språkbanken Text. [Link](https://doi.org/10.23695/3WMV-1Z09)
- Sharma, E., Li, C., & Wang, L. (2019). BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization. CoRR, abs/1906.03741. [Link](http://arxiv.org/abs/1906.03741)
- Soldaini, L., & Lo, K. (2023). peS2o (Pretraining Efficiently on S2ORC) Dataset. Allen Institute for AI.
- Strømberg-Derczynski, L., Ciosici, M., Baglini, R., Christiansen, M. H., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Madsen, J., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2021). The Danish Gigaword Corpus. Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), 413–421. [Link](https://aclanthology.org/2021.nodalida-main.46)
- Subramani, N., Luccioni, S., Dodge, J., & Mitchell, M. (2023). Detecting Personal Information in Training Corpora: An Analysis. 208–220. [Link](https://doi.org/10.18653/v1/2023.trustnlp-1.18)
- Varab, D., & Schluter, N. (2020). DaNewsroom: A Large-scale Danish Summarisation Dataset. Proceedings of The 12th Language Resources and Evaluation Conference, 6731–6739. [Link](https://www.aclweb.org/anthology/2020.lrec-1.831)
- Váradi, T., Nyéki, B., Koeva, S., Tadić, M., Štefanec, V., Ogrodniczuk, M., Nitoń, B., Pezik, P., Barbu Mititelu, V., Irimia, E., Mitrofan, M., Tufi\textcommabelows, D., Garabík, R., Krek, S., & Repar, A. (2022). Introducing the CURLICAT Corpora: Seven-language Domain Specific Annotated Corpora from Curated Sources. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 100–108). European Language Resources Association. [Link](https://aclanthology.org/2022.lrec-1.11)
- Wagner Filho, J. A., Wilkens, R., Idiart, M., & Villavicencio, A. (2018). The brwac corpus: A new open resource for brazilian portuguese. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).
- Žagar, A., Kavaš, M., Robnik-Šikonja, M., Erjavec, T., Fišer, D., Ljubešić, N., Ferme, M., Borovič, M., Boškovič, B., Ojsteršek, M., & Hrovat, G. (2022). Corpus of academic Slovene KAS 2.0. [Link](http://hdl.handle.net/11356/1448)
- Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson, Phu Mon Htut, and Samuel Bowman. 2022. BBQ: A hand-built bias benchmark for question answering. In Findings of the Association for Computational Linguistics: ACL 2022, pages 2086–2105, Dublin, Ireland. Association for Computational Linguistics.
- Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The Woman Worked as a Babysitter: On Biases in Language Generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3407–3412, Hong Kong, China. Association for Computational Linguistics.
- Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., & Tafjord, O. (2018). Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge. arXiv:1803. 05457v1.
- Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.
- Penedo, G., Kydlíček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Von Werra, L., & Wolf, T. (2024). The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale (arXiv:2406.17557). arXiv. http://arxiv.org/abs/2406.17557
- Singh, S., Vargus, F., Dsouza, D., Karlsson, B. F., Mahendiran, A., Ko, W.-Y., Shandilya, H., Patel, J., Mataciunas, D., OMahony, L., Zhang, M., Hettiarachchi, R., Wilson, J., Machado, M., Moura, L. S., Krzemiński, D., Fadaei, H., Ergün, I., Okoh, I., … Hooker, S. (2024). Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning (arXiv:2402.06619). arXiv. http://arxiv.org/abs/2402.06619

</details>

</details>

The model was trained for 3 epochs, with two final rounds of 0.3B higher-quality tokens each, 
meaning that the total number of tokens seen during pre-training amounts to roughly 7.8 trillion tokens.

We provide an extense Datasheet section following the best practices defined by [(Gebru et al., 2021)](https://arxiv.org/pdf/1803.09010).

<details>
<summary>Datasheet</summary>

#### Motivation

**For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description.**

The purpose of creating this dataset is to pre-train the Salamandra family of multilingual models with high performance in a large number of 
European languages (35) and code (including 92 different programming languages). In addition, we aim to represent especially the co-official 
languages of Spain: Spanish, Catalan, Galician, and Basque. This is the reason why we carry out an oversampling of these languages.

We detected that there is a great lack of massive multilingual data, especially in minority languages (Ostendorff & Rehm, 2023), so part of 
our efforts in the creation of this pre-training dataset have resulted in the contribution to large projects such as the Community OSCAR 
(Brack et al., 2024), which includes 151 languages and 40T words, or CATalog (Palomar-Giner et al., 2024), the largest open dataset in 
Catalan in the world.

**Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?**

The dataset has been created by the Language Technologies unit (LangTech) of the Barcelona Supercomputing Center - Centro Nacional de 
Supercomputación (BSC-CNS), which aims to advance the field of natural language processing through cutting-edge research and development 
and the use of HPC. In particular, it was created by the unit's data team, the main contributors being Javier Saiz, Ferran Espuña, and 
Jorge Palomar.

However, the creation of the dataset would not have been possible without the collaboration of a large number of collaborators, partners, 
and public institutions, which can be found in detail in the acknowledgements.

**Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.**

This work/research has been promoted and financed by the Government of Catalonia through the [Aina project](https://projecteaina.cat/).

#### Composition

**What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.**

The dataset consists entirely of text documents in various languages. Specifically, data was mainly sourced from the following databases and 
repositories:
- **Common Crawl:** Repository that holds website data and is run by the Common Crawl non-profit organization. It is updated monthly and is
  distributed under the CC0 1.0 public domain license.
- **GitHub:** Community platform that allows developers to create, store, manage, and share their code. Repositories are crawled and then
  distributed with their original licenses, which may vary from permissive to non-commercial licenses.
- **Wikimedia:** Database that holds the collection databases managed by the Wikimedia Foundation, including Wikipedia, Wikibooks, Wikinews,
  Wikiquote, Wikisource, and Wikivoyage. It is updated monthly and is distributed under Creative Commons Attribution-ShareAlike License 4.0.
- **EurLex:** Repository that holds the collection of legal documents from the European Union, available in all of the EU’s 24 official
  languages and run by the Publications Office of the European Union. It is updated daily and is distributed under the Creative Commons
  Attribution 4.0 International license.
- **Other repositories:** Specific repositories were crawled under permission for domain-specific corpora, which include academic, legal,
  and newspaper repositories.

We provide a complete list of dataset sources at the end of this section.

**How many instances are there in total (of each type, if appropriate)?**

The dataset contains a diverse range of instances across multiple languages, with notable adjustments for certain languages. English 
represents the largest portion, accounting for 39.08% of the total data. Spanish was upsampled by a factor of 2, bringing its share to 16.59%,
while Catalan (1.84%), Basque (0.26%), and Galician (0.36%) were also upsampled by 2. On the other hand, code-related data was downsampled 
by half, making up 6.42% of the total. Other prominent languages include French (6.59%), Russian (5.39%), German (4.25%), and Hungarian 
(3.93%), with several additional languages contributing between 1% and 2%, and smaller portions represented by a variety of others.

**Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).**

The dataset is a sample from multiple sources, with different weights based on the primary language of the content: Spanish, Catalan, 
Basque, and Galician content was upsampled by a factor of two, while programming languages were downsampled by a factor of half. Other 
sources were sampled in proportion to their occurrence.

**What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide a description.**

Each instance consists of a text document processed for deduplication, language identification, and source-specific filtering. Some 
documents required optical character recognition (OCR) to extract text from non-text formats such as PDFs.

**Is there a label or target associated with each instance? If so, please provide a description.**

Each instance is labeled with a unique identifier, the primary language of the content, and the URL for web-sourced instances. Additional 
labels were automatically assigned to detect specific types of content —harmful or toxic content— and to assign preliminary indicators of 
undesired qualities —very short documents, high density of symbols, etc.— which were used for filtering instances.

**Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.**

No significant information is missing from the instances.

**Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please describe how these relationships are made explicit.**

Instances are related through shared metadata, such as source and language identifiers.

**Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind them.**

The dataset is split randomly into training, validation, and test sets.

**Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.**

Despite removing duplicated instances within each source, redundancy remains at the paragraph and sentence levels, particularly in 
web-sourced instances where SEO techniques and templates contribute to repeated textual patterns. Some instances may also be duplicated 
across sources due to format variations.

**Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a dataset consumer? Please provide descriptions of all external resources and any restrictions associated with them, as well as links or other access points, as appropriate.**

The dataset is self-contained and does not rely on external resources.

**Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor–patient confidentiality, data that includes the content of individuals’ non-public communications)? If so, please provide a description.**

The dataset does not contain confidential data.

**Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why. If the dataset does not relate to people, you may skip the remaining questions in this section.**

The dataset includes web-crawled content, which may overrepresent pornographic material across languages (Kreutzer et al., 2022). Although 
pre-processing techniques were applied to mitigate offensive content, the heterogeneity and scale of web-sourced data make exhaustive 
filtering challenging, which makes it next to impossible to identify all adult content without falling into excessive filtering, which may 
negatively influence certain demographic groups (Dodge et al., 2021).

**Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset.**

The dataset does not explicitly identify any subpopulations.

**Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.**

Web-sourced instances in the dataset may contain personally identifiable information (PII) that is publicly available on the Web, such as 
names, IP addresses, email addresses, and phone numbers. While it would be possible to indirectly identify individuals through the 
combination of multiple data points, the nature and scale of web data makes it difficult to parse such information. In any case, efforts are 
made to filter or anonymize sensitive data during pre-processing, but some identifiable information may remain in the dataset.

**Does the dataset contain data that might be considered sensitive in any way? If so, please provide a description.**

Given that the dataset includes web-sourced content and other publicly available documents, instances may inadvertently reveal financial 
information, health-related details, or forms of government identification, such as social security numbers (Subramani et al., 2023), 
especially if the content originates from less-regulated sources or user-generated platforms. 

#### Collection Process

**How was the data collected?**

This dataset is constituted by combining several sources, whose acquisition methods can be classified into three groups:
- Web-sourced datasets with some preprocessing available under permissive license (p.e. Common Crawl).
- Domain-specific or language-specific raw crawls, always respecting robots.txt (p.e. Spanish Crawling).
- Manually curated data obtained through collaborators, data providers (by means of legal assignment agreements) or open source projects
  (p.e. CATalog).

**What mechanisms or procedures were used to collect the data? How were these mechanisms or procedures validated?**

According to the three groups previously defined, these are the mechanisms used in each of them:
- Open direct download. Validation: data integrity tests. 
- Ad-hoc scrapers or crawlers. Validation: software unit and data integrity tests.
- Direct download via FTP, SFTP, API or S3. Validation: data integrity tests. 

**If the dataset is a sample from a larger set, what was the sampling strategy?**

The sampling strategy was to use the whole dataset resulting from the filtering explained in the ‘preprocessing/cleaning/labelling’ section, 
with the particularity that an upsampling of 2 (i.e. twice the probability of sampling a document) was performed for the co-official 
languages of Spain (Spanish, Catalan, Galician, Basque), and a downsampling of 1/2 was applied for code (half the probability of sampling a 
code document, evenly distributed among all programming languages).

**Who was involved in the data collection process and how were they compensated?**

This data is generally extracted, filtered and sampled by automated processes. The code required to run these processes has been developed 
entirely by members of the LangTech data team, or otherwise obtained from open-source software. Furthermore, there has been no monetary 
consideration for acquiring data from suppliers.

**Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances? If not, please describe the timeframe in which the data associated with the instances was created.**

Data were acquired and processed from April 2023 to April 2024. However, as mentioned, much data has been obtained from open projects such 
as Common Crawl, which contains data from 2014, so it is the end date (04/2024) rather than the start date that is important.

**Were any ethical review processes conducted? If so, please provide a description of these review processes, including the outcomes, as well as a link or other access point to any supporting documentation.**

No particular ethical review process has been carried out as the data is mostly open and not particularly sensitive. However, we have an 
internal evaluation team and a bias team to monitor ethical issues. In addition, we work closely with ‘Observatori d'Ètica en Intel·ligència 
Artificial’ (OEIAC) and  ‘Agencia Española de Supervisión de la Inteligencia Artificial’ (AESIA) to audit the processes we carry out from an 
ethical and legal point of view, respectively.

#### Preprocessing

**Was any preprocessing/cleaning/labeling of the data done? If so, please provide a description. If not, you may skip the remaining questions in this section.**

Instances of text documents were not altered, but web-sourced documents were filtered based on specific criteria along two dimensions:
- Quality: documents with a score lower than 0.8, based on undesired qualities, such as documents with low number of lines, very short
  sentences, presence of long footers and headers, and high percentage of punctuation, obtained through CURATE (Palomar-Giner et al., 2024)
  were filtered out.
- Harmful or adult content: documents originating from Colossal OSCAR were filtered using LLM-Datasets (Ostendorff et al., 2024) based on
  the perplexity from a language model (‘harmful_pp’ field) provided by the Ungoliant pipeline (Abadji et al., 2021).

**Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data? If so, please provide a link or other access point to the “raw” data.**

The original raw data was not kept.

**Is the software that was used to preprocess/clean/label the data available? If so, please provide a link or other access point.**

Yes, the preprocessing and filtering software is open-sourced. The [CURATE](https://github.com/langtech-bsc/CURATE) pipeline was used for Spanish Crawling and CATalog, 
and the [Ungoliant](https://github.com/oscar-project/ungoliant) pipeline was used for the OSCAR project.

#### Uses

**Has the dataset been used for any tasks already? If so, please provide a description.**

Pre-train the Salamandra model family.

**What (other) tasks could the dataset be used for?**

The data can be used primarily to pre-train other language models, which can then be used for a wide range of use cases. The dataset could 
also be used for other tasks such as fine-tuning language models, cross-lingual NLP tasks, machine translation, domain-specific text 
generation, and language-specific data analysis.

**Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses? Is there anything a dataset consumer could do to mitigate these risks or harms?**
 
Web-crawled content is over-represented with standard language varieties, impacting language model performance for minority languages. 
Language diversity in data is crucial to avoid bias, especially in encoding non-standard dialects, preventing the exclusion of demographic 
groups. Moreover, despite legal uncertainties in web-scraped data, we prioritize permissive licenses and privacy protection measures, 
acknowledging the challenges posed by personally identifiable information (PII) within large-scale datasets. Our ongoing efforts aim to 
address privacy concerns and contribute to a more inclusive linguistic dataset.

**Are there tasks for which the dataset should not be used?**

-

#### Distribution 

**Will the dataset be distributed to third parties outside of the entity on behalf of which the dataset was created? If so, please provide a description.**

The dataset will not be released or distributed to third parties. Any related question to distribution is omitted in this section.

#### Maintenance

**Who will be supporting/hosting/maintaining the dataset?**

The dataset will be hosted by the Language Technologies unit (LangTech) of the Barcelona Supercomputing Center (BSC). The team will ensure 
regular updates and monitor the dataset for any issues related to content integrity, legal compliance, and bias for the sources they are 
responsible for.

**How can the owner/curator/manager of the dataset be contacted?**

The data owner may be contacted with the email address [email protected].

**Will the dataset be updated?**

The dataset will not be updated.

**If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances? If so, please describe these limits and explain how they will be enforced.**

The dataset does not keep sensitive data that could allow direct identification of individuals, apart from the data that is publicly 
available in web-sourced content. Due to the sheer volume and diversity of web data, it is not feasible to notify individuals or manage data 
retention on an individual basis. However, efforts are made to mitigate the risks associated with sensitive information through 
pre-processing and filtering to remove identifiable or harmful content. Despite these measures, vigilance is maintained to address potential 
privacy and ethical issues.

**Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.**

Since the dataset will not be updated, only the final version will be kept.

**If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?**

The dataset does not allow for external contributions.

</details>

### Finetuning Data

This instruction-tuned variant has been trained with a mixture of 276k English, Spanish, and Catalan multi-turn instructions gathered from open datasets:
| Dataset               | ca     | en     | es     |
|-----------------------|:------:|:------:|:------:|
| alpaca-cleaned        | -      | 50,000 | -      |
| aya-dataset           | -      | 3,944  | 3,854  |
| CoQCat                | 4,797  | -      | -      |
| databricks-dolly-15k  | -      | 15,011 | -      |
| dolly-3k-ca           | 3,232  | -      | -      |
| flores-instr          | 1,994  | 1,994  | 3,988  |
| MentorCA              | 7,122  | -      | -      |
| MentorES              | -      | -      | 7,122  |
| no-robots             | -      | 9,499  | -      |
| oasst-ca              | 2,518  | -      | -      |
| oasst2                | 750    | 31,086 | 15,438 |
| open-orca	         	| -	     | 50,000 | -	   |
| RagMultilingual       | 16,043 | 14,997 | 11,263 |
| tower-blocks          | -      | 19,895 | 2,000  |
| **Total** | **36,456** | **196,426** | **43,665** |

---

## Evaluation

### Gold-standard benchmarks

Evaluation is done using the Language Model Evaluation Harness (Gao et al., 2024). We evaluate on a set of tasks taken from [SpanishBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/spanish_bench), [CatalanBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/catalan_bench), [BasqueBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/basque_bench) and [GalicianBench](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/galician_bench). These benchmarks include both new and existing tasks and datasets. Given that this is an instructed model, we add LM Evaluation Harness's native feature of `chat-template` to the setup. In the tables below, we include the results in a selection of evaluation datasets that represent model's performance across a variety of tasks within these benchmarks. 

We only use tasks that are either human generated, human translated, or with a strong human-in-the-loop (i.e., machine translation followed by professional revision or machine generation followed by human revision and annotation). This is the reason behind the variety in number of tasks reported across languages. As more tasks that fulfill these requirements are published, we will update the presented results. We also intend to expand the evaluation to other languages, as long as the datasets meet our quality standards.

During the implementation of the evaluation we observed a series of issues worth considering when replicating and interpreting the results presented. These issues include ≈1.5% variances in performance in some tasks depending on the version of the `transformers` library used, and depending on the use (or lack of use) of tensor parallelism when loading a model. When implementing existing tasks, we carry out a comprehensive quality evaluation of the dataset, the Harness task itself, and what kind of input models see during evaluation. Our implementation (see links above) addresses multiple existing problems such as errors in datasets and prompts, and lack of pre-processing. All this means that results will vary if using other Harness implementations, and may slightly vary depending on the replication setup.

It should be noted that these results are subject to all the drawbacks of every current gold-standard evaluation, and that the figures do not fully represent the models capabilities and potential. We thus advise caution when reading and interpreting the results.

A full list of results compared to other baselines, a discussion of the model's performance across tasks and its implications, and details regarding problem-solving with task implementation will soon be available in the technical report.

All results reported below are on a 0-shot setting.

#### Spanish

<table><thead>
  <tr>
    <th>Category</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Result</th>
  </tr></thead>
<tbody>
  <tr>
    <td>Commonsense Reasoning</td>
    <td>xstorycloze_es</td>
    <td>acc</td>
    <td>69.29</td>
  </tr>
  <tr>
    <td rowspan="2">NLI</td>
    <td>wnli_es</td>
    <td>acc</td>
    <td>45.07</td>
  </tr>
  <tr>
    <td>xnli_es</td>
    <td>acc</td>
    <td>51.49</td>
  </tr>
  <tr>
    <td>Paraphrasing</td>
    <td>paws_es</td>
    <td>acc</td>
    <td>59.4</td>
  </tr>
  <tr>
    <td>QA</td>
    <td>xquad_es</td>
    <td>acc</td>
    <td>43.82</td>
  </tr>
  <tr>
    <td>Translation</td>
    <td>flores_es</td>
    <td>bleu</td>
    <td>22.98</td>
  </tr>
</tbody>
</table>

#### Catalan

<table><thead>
  <tr>
    <th>Category</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Result</th>
  </tr></thead>
<tbody>
  <tr>
    <td rowspan="2">Commonsense Reasoning</td>
    <td>copa_ca</td>
    <td>acc</td>
    <td>81.2</td>
  </tr>
  <tr>
    <td>xstorycloze_ca</td>
    <td>acc</td>
    <td>70.68</td>
  </tr>
  <tr>
    <td rowspan="2">NLI</td>
    <td>wnli_ca</td>
    <td>acc</td>
    <td>50.7</td>
  </tr>
  <tr>
    <td>xnli_ca</td>
    <td>acc</td>
    <td>55.14</td>
  </tr>
  <tr>
    <td rowspan="2">Paraphrasing</td>
    <td>parafraseja</td>
    <td>acc</td>
    <td>65.18</td>
  </tr>
  <tr>
    <td>paws_ca</td>
    <td>acc</td>
    <td>62.95</td>
  </tr>
  <tr>
    <td rowspan="5">QA</td>
    <td>arc_ca_easy</td>
    <td>acc</td>
    <td>64.98</td>
  </tr>
  <tr>
    <td>arc_ca_challenge</td>
    <td>acc</td>
    <td>41.89</td>
  </tr>
  <tr>
    <td>openbookqa_ca</td>
    <td>acc</td>
    <td>35.2</td>
  </tr>
  <tr>
    <td>piqa_ca</td>
    <td>acc</td>
    <td>69.53</td>
  </tr>
  <tr>
    <td>siqa_ca</td>
    <td>acc</td>
    <td>48.62</td>
  </tr>
  <tr>
    <td>Translation</td>
    <td>flores_ca</td>
    <td>bleu</td>
    <td>28.65</td>
  </tr>
</tbody></table>

#### Basque

<table><thead>
  <tr>
    <th>Category</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Result</th>
  </tr></thead>
<tbody>
  <tr>
    <td rowspan="2">Commonsense Reasoning</td>
    <td>xcopa_eu</td>
    <td>acc</td>
    <td>61.6</td>
  </tr>
  <tr>
    <td>xstorycloze_eu</td>
    <td>acc</td>
    <td>61.15</td>
  </tr>
  <tr>
    <td rowspan="2">NLI</td>
    <td>wnli_eu</td>
    <td>acc</td>
    <td>45.07</td>
  </tr>
  <tr>
    <td>xnli_eu</td>
    <td>acc</td>
    <td>46.81</td>
  </tr>
  <tr>
    <td rowspan="3">QA</td>
    <td>eus_exams</td>
    <td>acc</td>
    <td>39.09</td>
  </tr>
  <tr>
    <td>eus_proficiency</td>
    <td>acc</td>
    <td>36.93</td>
  </tr>
  <tr>
    <td>eus_trivia</td>
    <td>acc</td>
    <td>46.94</td>
  </tr>
  <tr>
    <td>Reading Comprehension</td>
    <td>eus_reading</td>
    <td>acc</td>
    <td>45.45</td>
  </tr>
  <tr>
    <td>Translation</td>
    <td>flores_eu</td>
    <td>bleu</td>
    <td>14.89</td>
  </tr>
</tbody></table>

#### Galician

<table><thead>
  <tr>
    <th>Category</th>
    <th>Task</th>
    <th>Metric</th>
    <th>Result</th>
  </tr></thead>
<tbody>
  <tr>
    <td rowspan="2">Paraphrasing</td>
    <td>parafrases_gl</td>
    <td>acc</td>
    <td>55.44</td>
  </tr>
  <tr>
    <td>paws_gl</td>
    <td>acc</td>
    <td>56.55</td>
  </tr>
  <tr>
    <td>QA</td>
    <td>openbookqa_gl</td>
    <td>acc</td>
    <td>38.4</td>
  </tr>
  <tr>
    <td>Translation</td>
    <td>flores_gl</td>
    <td>bleu</td>
    <td>27.03</td>
  </tr>
</tbody>
</table>

### LLM-as-a-judge

We use [Prometheus-2 8x7B](https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0) as a judge to evaluate the responses of the model. Tasks are created from existing multilingual evaluation datasets covering the same categories as the ones measured in our gold-standard benchmarks. We randomly select a subset of 250 instances per language from the `test` set of each source dataset. To evaluate the responses of our model, we use task-specific criteria developed in-house for the _LLM-judge_ to use. Each criterion is measured either as a 5-point Likert scale or as a binary task depending on the idiosyncrasy of the task and criterion.

Prompts for each task are created in various ways to score the model's robustness in addition to these criteria. This is done by presenting the same source instance within three different prompts. We then calculate the variance between the scores assigned by the _LLM-judge_ to our model's responses to the three prompt styles and average it across all instances. Prompts are human translated to all languages measured. We do not provide the _LLM-judge_ with a reference answer.

The _judge_ prompt we use during evaluation is the same used to fine tune the Prometheus-2 family. We keep the _judge_ prompt and criteria used to present the _LLM-judge_ with the task prompts and model responses in English for evaluation across languages. The _judge_ prompt used is:

```python
"You are a fair judge assistant tasked with providing clear, objective feedback based on specific criteria, ensuring each assessment reflects the absolute standards set for performance.

###Task Description:
An instruction (might include an Input inside it), a response to evaluate, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between {a} and {b}. You should refer to the score rubric.
3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between {a} and {b})\"
4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{input}

###Response to evaluate:
{prediction}

###Score Rubrics:
{criteria}

###Feedback:"
```

As an example, prompts for the Math task in English are based on instances from [MGSM](https://huggingface.co/datasets/juletxara/mgsm), and each instance is presented within these prompts:

```python
"en": [
      ("I need help with this math problem: \"", "\" Give me the answer step by step and also the final result separately."),
      ("Can you please help me answer this? \"", "\" Explain the answer and give me the final result as well. Thanks."),
      ("Help me with this problem: \"", "\" I need the answer explained and the final result separately.")
]
```


This task is then evaluated by the _LLM-judge_ using two criteria, reasoning capability (5-point Likert) and mathematical correctness (binary):

```python
reasoning_capability_criteria = {
    "reasoning_capability": """
[Does the model's answer demonstrate reasoning capability?]
Score 1: The answer demonstrates poor reasoning, with illogical arguments or conclusions that do not follow from the provided information.
Score 2: The answer shows weak reasoning, with some logical connections but also contains significant flaws or gaps in the argumentation.
Score 3: The answer demonstrates adequate reasoning, with generally logical arguments, but may have minor flaws or a lack of depth in the reasoning process.
Score 4: The answer shows strong reasoning, with well-structured arguments and conclusions that logically follow from the information provided.
Score 5: The answer demonstrates exceptional reasoning, with clear, coherent, and insightful arguments that are logically sound and well-supported by the information provided."""
}

mathematical_correctness_binary_criteria = {
    "mathematical_correctness_binary": """
[Is the model's answer mathematically correct?]
Score 0: The answer contains mathematical errors that render the solution incorrect or unreliable.
Score 1: The answer is mathematically correct, with accurate calculations and appropriate use of mathematical concepts."""
}
```

#### Multilingual results

Here, we present results for seven categories of tasks in Spanish, Catalan, Basque, Galician, and English. Results are presented for each task, criterion and language. Criteria with a `(B)` after their name are binary criteria (i.e., numbers go from 0 to 1, where 1 is best). The rest of the criteria are measured using a 5-point Likert scale, where 5 is best. The first number of the pair of numbers separated by `/` shows the average score for the criterion (and language). The second number of each pair is the robustness score, where numbers closer to 0 mean that the model generates similar responses when comparing the three prompt varieties for a single instance.

Further details on all tasks and criteria, a full list of results compared to other baselines, a discussion of the model's performance across tasks and its implications, and details regarding problem-solving with task implementation will soon be available in the technical report.

<table class="tg"><thead>
  <tr>
    <th class="tg-0pky"><span style="font-weight:bold">Category</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">Dataset</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">Criteria</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">es</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">ca</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">gl</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">eu</span></th>
    <th class="tg-0pky"><span style="font-weight:bold">en</span></th>
  </tr></thead>
<tbody>
  <tr>
    <td class="tg-0pky">Commonsense Reasoning</td>
    <td class="tg-0pky">XStoryCloze</td>
    <td class="tg-0pky">Ending coherence</td>
    <td class="tg-0pky">3.24/0.63</td>
    <td class="tg-0pky">3.12/0.51</td>
    <td class="tg-0pky">2.87/0.59</td>
    <td class="tg-0pky">2.16/0.52</td>
    <td class="tg-0pky">3.71/0.50</td>
  </tr>
  <tr>
    <td class="tg-0pky" rowspan="3">Paraphrasing</td>
    <td class="tg-0pky" rowspan="3">PAWS</td>
    <td class="tg-0pky">Completeness `(B)`</td>
    <td class="tg-0pky">0.86/0.07</td>
    <td class="tg-0pky">0.82/0.09</td>
    <td class="tg-0pky">0.78/0.10</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">0.92/0.05</td>
  </tr>
  <tr>
    <td class="tg-0pky">Paraphrase generation</td>
    <td class="tg-0pky">3.81/0.54</td>
    <td class="tg-0pky">3.67/0.55</td>
    <td class="tg-0pky">3.56/0.57</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">3.98/0.37</td>
  </tr>
  <tr>
    <td class="tg-0pky">Grammatical correctness `(B)`</td>
    <td class="tg-0pky">0.93/0.03</td>
    <td class="tg-0pky">0.92/0.05</td>
    <td class="tg-0pky">0.89/0.06</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">0.96/0.03</td>
  </tr>
  <tr>
    <td class="tg-0pky" rowspan="2">Reading Comprehension</td>
    <td class="tg-0pky" rowspan="2">Belebele</td>
    <td class="tg-0pky">Passage comprehension</td>
    <td class="tg-0pky">3.43/0.43</td>
    <td class="tg-0pky">3.28/0.50</td>
    <td class="tg-0pky">3.02/0.56</td>
    <td class="tg-0pky">2.61/0.43</td>
    <td class="tg-0pky">3.43/0.58</td>
  </tr>
  <tr>
    <td class="tg-0pky">Answer relevance `(B)`</td>
    <td class="tg-0pky">0.86/0.05</td>
    <td class="tg-0pky">0.84/0.05</td>
    <td class="tg-0pky">0.75/0.08</td>
    <td class="tg-0pky">0.65/0.11</td>
    <td class="tg-0pky">0.83/0.06</td>
  </tr>
  <tr>
    <td class="tg-0pky" rowspan="2">Extreme Summarization</td>
    <td class="tg-0pky" rowspan="2">XLSum &amp; caBreu &amp; summarization_gl</td>
    <td class="tg-0pky">Informativeness</td>
    <td class="tg-0pky">3.37/0.34</td>
    <td class="tg-0pky">3.57/0.31</td>
    <td class="tg-0pky">3.40/0.31</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">3.32/0.26</td>
  </tr>
  <tr>
    <td class="tg-0pky">Conciseness</td>
    <td class="tg-0pky">3.06/0.34</td>
    <td class="tg-0pky">2.88/0.50</td>
    <td class="tg-0pky">3.09/0.38</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">3.32/0.22</td>
  </tr>
  <tr>
    <td class="tg-0pky" rowspan="2">Math</td>
    <td class="tg-0pky" rowspan="2">MGSM</td>
    <td class="tg-0pky">Reasoning capability</td>
    <td class="tg-0pky">3.29/0.72</td>
    <td class="tg-0pky">3.16/0.65</td>
    <td class="tg-0pky">3.33/0.60</td>
    <td class="tg-0pky">2.56/0.52</td>
    <td class="tg-0pky">3.35/0.65</td>
  </tr>
  <tr>
    <td class="tg-0pky">Mathematical correctness `(B)`</td>
    <td class="tg-0pky">0.68/0.12</td>
    <td class="tg-0pky">0.65/0.13</td>
    <td class="tg-0pky">0.73/0.11</td>
    <td class="tg-0pky">0.59/0.13</td>
    <td class="tg-0pky">0.67/0.12</td>
  </tr>
  <tr>
    <td class="tg-0pky" rowspan="2">Translation form Language</td>
    <td class="tg-0pky" rowspan="2">FLORES-200</td>
    <td class="tg-0pky">Fluency</td>
    <td class="tg-0pky">3.95/0.11</td>
    <td class="tg-0pky">3.88/0.15</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">3.92/0.14</td>
  </tr>
  <tr>
    <td class="tg-0pky">Accuracy</td>
    <td class="tg-0pky">4.22/0.15</td>
    <td class="tg-0pky">4.25/0.21</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">4.25/0.23</td>
  </tr>
  <tr>
    <td class="tg-0pky" rowspan="2">Translation to Language</td>
    <td class="tg-0pky" rowspan="2">FLORES-200</td>
    <td class="tg-0pky">Fluency</td>
    <td class="tg-0pky">3.92/0.11</td>
    <td class="tg-0pky">3.84/0.14</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">4.19/0.14</td>
  </tr>
  <tr>
    <td class="tg-0pky">Accuracy</td>
    <td class="tg-0pky">4.31/0.16</td>
    <td class="tg-0pky">4.18/0.20</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">-- / --</td>
    <td class="tg-0pky">4.63/0.15</td>
  </tr>
</tbody></table>

---

## Ethical Considerations and Limitations

We examine the presence of undesired societal and cognitive biases present in this model using different benchmarks. For societal biases, 
we test performance using the BBQ dataset (Parrish et al., 2022) in the original English and the Regard dataset (Sheng et al., 2019). 
We report that while performance is high (accuracies around 0.8 depending on the social category) in disambiguated settings, 
the model performs very poorly in ambiguous settings, which indicates the presence of societal biases that need to be further addressed in post-training phases.

Our cognitive bias analysis focuses on positional effects in 0-shot settings, and majority class bias in few-shot settings. 
For positional effects, we leverage the ARC Multiple Choice Question dataset (Clark et al., 2018). We observe significant, 
but relatively weak primacy effects, whereby the model shows a preference for answers towards the beginning of the list of provided answers. 
We measure effects of majority class effects in few-shot settings using SST-2 (Socher et al., 2013). We again detect significant effects, 
with a small effect size. This suggests that the model is relatively robust against the examined cognitive biases.

 We highlight that our analyses of these biases are by no means exhaustive and are limited by the relative scarcity of adequate resources 
 in all languages present in the training data. We aim to gradually extend and expand our analyses in future work.
 
 These results can be expected from a  model that has undergone only a preliminary instruction tuning. 
 These tests are performed in order to show the biases the model may contain. We urge developers to take 
 them into account and perform safety testing and tuning tailored to their specific applications of the model.

---

## Additional information

### Author
The Language Technologies Unit from Barcelona Supercomputing Center.

### Contact
For further information, please send an email to <[email protected]>.

### Copyright
Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center.

### Funding
This work has been promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/).

This work is funded by the _Ministerio para la Transformación Digital y de la Función Pública_ - Funded by EU – NextGenerationEU 
within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337.

### Acknowledgements


This project has benefited from the contributions of numerous teams and institutions, mainly through data contributions, knowledge transfer or technical support. 

In Catalonia, many institutions have been involved in the project. Our thanks to Òmnium Cultural, Parlament de Catalunya, Institut d'Estudis Aranesos, Racó Català, Vilaweb, ACN, Nació Digital, El món and Aquí Berguedà.

At national level, we are especially grateful to our ILENIA project partners: CENID, HiTZ and CiTIUS for their participation. We also extend our genuine gratitude to the Spanish Senate and Congress, Fundación Dialnet, Fundación Elcano and the ‘Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)’ of the University of Las Palmas de Gran Canaria. 

At the international level, we thank the Welsh government, DFKI, Occiglot project, especially Malte Ostendorff, and The Common Crawl Foundation, especially Pedro Ortiz, for their collaboration. We would also like to give special thanks to the NVIDIA team, with whom we have met regularly, specially to: Ignacio Sarasua, Adam Henryk Grzywaczewski, Oleg Sudakov, Sergio Perez, Miguel Martinez, Felipes Soares and  Meriem Bendris. Their constant support has been especially appreciated throughout the entire process.

Their valuable efforts have been instrumental in the development of this work.

### Disclaimer
Be aware that the model may contain biases or other unintended distortions. 
When third parties deploy systems or provide services based on this model, or use the model themselves, 
they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations, 
including those governing the use of Artificial Intelligence.

The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use.

### Citation

Technical report and paper coming soon.

### License
[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)

## Model Index
|Model|Base|Instruct|
|:---:|:---:|:---:|
|2B| [Link](https://huggingface.co/BSC-LT/salamandra-2b) | [Link](https://huggingface.co/BSC-LT/salamandra-2b-instruct) |
|7B| [Link](https://huggingface.co/BSC-LT/salamandra-7b) | [Link](https://huggingface.co/BSC-LT/salamandra-7b-instruct) |
|40B| WiP | WiP |