bsc-temu commited on
Commit
a08e306
·
1 Parent(s): 9777f8c

remove description

Browse files
Files changed (1) hide show
  1. README.md +9 -229
README.md CHANGED
@@ -8,239 +8,19 @@ license: apache-2.0
8
  ---
9
  # BERTa: RoBERTa-based Catalan language model
10
 
11
- <span style="color:red"> WARNING: This repository is now superseded by </span> [BSC-TeMU/roberta-base-ca-cased](https://huggingface.co/BSC-TeMU/roberta-base-ca-cased). <span style="color:red"> Future updates will be released in the new repository, so it is highly recommended to load the model using the new path: </span>
 
 
 
 
 
 
12
 
 
13
 
14
  ```python
15
  from transformers import AutoModel
16
  model = AutoModel.from_pretrained("BSC-TeMU/roberta-base-ca-cased")
17
  ```
18
 
19
- <span style="color:red"> From now on, all models and datasets from the BSC's Text Mining Unit will be published on the </span> [official organization account](https://huggingface.co/BSC-TeMU).
20
-
21
-
22
- ## BibTeX citation
23
-
24
- If you use any of these resources (datasets or models) in your work, please cite our latest paper:
25
-
26
- ```bibtex
27
- @inproceedings{armengol-estape-etal-2021-multilingual,
28
- title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
29
- author = "Armengol-Estap{\'e}, Jordi and
30
- Carrino, Casimiro Pio and
31
- Rodriguez-Penagos, Carlos and
32
- de Gibert Bonet, Ona and
33
- Armentano-Oller, Carme and
34
- Gonzalez-Agirre, Aitor and
35
- Melero, Maite and
36
- Villegas, Marta",
37
- booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
38
- month = aug,
39
- year = "2021",
40
- address = "Online",
41
- publisher = "Association for Computational Linguistics",
42
- url = "https://aclanthology.org/2021.findings-acl.437",
43
- doi = "10.18653/v1/2021.findings-acl.437",
44
- pages = "4933--4946",
45
- }
46
- ```
47
-
48
-
49
- ## Model description
50
-
51
- BERTa is a transformer-based masked language model for the Catalan language.
52
- It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model
53
- and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.
54
-
55
- ## Training corpora and preprocessing
56
-
57
- The training corpus consists of several corpora gathered from web crawling and public corpora.
58
-
59
- The publicly available corpora are:
60
-
61
- 1. the Catalan part of the [DOGC](http://opus.nlpl.eu/DOGC-v2.php) corpus, a set of documents from the Official Gazette of the Catalan Government
62
-
63
- 2. the [Catalan Open Subtitles](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/mono/OpenSubtitles.raw.ca.gz), a collection of translated movie subtitles
64
-
65
- 3. the non-shuffled version of the Catalan part of the [OSCAR](https://traces1.inria.fr/oscar/) corpus \\\\cite{suarez2019asynchronous},
66
- a collection of monolingual corpora, filtered from [Common Crawl](https://commoncrawl.org/about/)
67
-
68
- 4. The [CaWac](http://nlp.ffzg.hr/resources/corpora/cawac/) corpus, a web corpus of Catalan built from the .cat top-level-domain in late 2013
69
- the non-deduplicated version
70
-
71
- 5. the [Catalan Wikipedia articles](https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/cawiki/20200801/) downloaded on 18-08-2020.
72
-
73
- The crawled corpora are:
74
-
75
- 6. The Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains
76
- 7. the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government
77
-
78
- 8. the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the [Catalan News Agency](https://www.acn.cat/)
79
-
80
- To obtain a high-quality training corpus, each corpus have preprocessed with a pipeline of operations, including among the others,
81
- sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents.
82
- During the process, we keep document boundaries are kept.
83
- Finally, the corpora are concatenated and further global deduplication among the corpora is applied.
84
- The final training corpus consists of about 1,8B tokens.
85
-
86
-
87
- ## Tokenization and pretraining
88
-
89
- The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2)
90
- used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens.
91
- The BERTa pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model
92
- with the same hyperparameters as in the original work.
93
- The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM.
94
-
95
- ## Evaluation
96
-
97
- ## CLUB benchmark
98
-
99
- The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB),
100
- that has been created along with the model.
101
-
102
- It contains the following tasks and their related datasets:
103
-
104
- 1. Part-of-Speech Tagging (POS)
105
-
106
- Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus
107
-
108
- 2. Named Entity Recognition (NER)
109
-
110
- **[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version,
111
- filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format
112
-
113
- 3. Text Classification (TC)
114
-
115
- **[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus
116
-
117
- 4. Semantic Textual Similarity (STS)
118
-
119
- **[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them,
120
- scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349)
121
-
122
- 5. Question Answering (QA):
123
-
124
- **[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan.
125
-
126
- **[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
127
-
128
- Here are the train/dev/test splits of the datasets:
129
-
130
- | Task (Dataset) | Total | Train | Dev | Test |
131
- |:--|:--|:--|:--|:--|
132
- | NER (Ancora) |13,581 | 10,628 | 1,427 | 1,526 |
133
- | POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
134
- | STS | 3,073 | 2,073 | 500 | 500 |
135
- | TC (TeCla) | 137,775 | 110,203 | 13,786 | 13,786|
136
- | QA (ViquiQuAD) | 14,239 | 11,255 | 1,492 | 1,429 |
137
-
138
-
139
- _The fine-tuning on downstream tasks have been performed with the HuggingFace [**Transformers**](https://github.com/huggingface/transformers) library_
140
-
141
- ## Results
142
-
143
- Below the evaluation results on the CLUB tasks compared with the multilingual mBERT, XLM-RoBERTa models and
144
- the Catalan WikiBERT-ca model
145
-
146
-
147
- | Task | NER (F1) | POS (F1) | STS (Pearson) | TC (accuracy) | QA (ViquiQuAD) (F1/EM) | QA (XQuAD) (F1/EM) |
148
- | ------------|:-------------:| -----:|:------|:-------|:------|:----|
149
- | BERTa | **88.13** | **98.97** | **79.73** | **74.16** | **86.97/72.29** | **68.89/48.87** |
150
- | mBERT | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 |
151
- | XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 |
152
- | WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 |
153
-
154
-
155
- ## Intended uses & limitations
156
- The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section)
157
- However, the is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition.
158
-
159
- ---
160
-
161
- ## Using BERTa
162
- ## Load model and tokenizer
163
-
164
- ``` python
165
- from transformers import AutoTokenizer, AutoModelForMaskedLM
166
-
167
- tokenizer = AutoTokenizer.from_pretrained("bsc/roberta-base-ca-cased")
168
-
169
- model = AutoModelForMaskedLM.from_pretrained("bsc/roberta-base-ca-cased")
170
- ```
171
-
172
- ## Fill Mask task
173
-
174
- Below, an example of how to use the masked language modelling task with a pipeline.
175
-
176
- ```python
177
- >>> from transformers import pipeline
178
- >>> unmasker = pipeline('fill-mask', model='bsc/roberta-base-ca-cased')
179
- >>> unmasker("Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
180
- "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
181
- "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
182
- "i pel nord-oest per la serralada de Collserola "
183
- "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
184
- "la línia de costa encaixant la ciutat en un perímetre molt definit.")
185
-
186
- [
187
- {
188
- "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
189
- "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
190
- "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
191
- "i pel nord-oest per la serralada de Collserola "
192
- "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
193
- "la línia de costa encaixant la ciutat en un perímetre molt definit.",
194
- "score": 0.4177263379096985,
195
- "token": 734,
196
- "token_str": " Barcelona"
197
- },
198
- {
199
- "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
200
- "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
201
- "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
202
- "i pel nord-oest per la serralada de Collserola "
203
- "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
204
- "la línia de costa encaixant la ciutat en un perímetre molt definit.",
205
- "score": 0.10696165263652802,
206
- "token": 3849,
207
- "token_str": " Badalona"
208
- },
209
- {
210
- "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
211
- "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
212
- "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
213
- "i pel nord-oest per la serralada de Collserola "
214
- "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
215
- "la línia de costa encaixant la ciutat en un perímetre molt definit.",
216
- "score": 0.08135009557008743,
217
- "token": 19349,
218
- "token_str": " Collserola"
219
- },
220
- {
221
- "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
222
- "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
223
- "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
224
- "i pel nord-oest per la serralada de Collserola "
225
- "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
226
- "la línia de costa encaixant la ciutat en un perímetre molt definit.",
227
- "score": 0.07330769300460815,
228
- "token": 4974,
229
- "token_str": " Terrassa"
230
- },
231
- {
232
- "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
233
- "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
234
- "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
235
- "i pel nord-oest per la serralada de Collserola "
236
- "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
237
- "la línia de costa encaixant la ciutat en un perímetre molt definit.",
238
- "score": 0.03317456692457199,
239
- "token": 14333,
240
- "token_str": " Gavà"
241
- }
242
- ]
243
- ```
244
-
245
-
246
-
 
8
  ---
9
  # BERTa: RoBERTa-based Catalan language model
10
 
11
+ <font size="+2">
12
+ <strong>
13
+ <span style="color:red">
14
+ WARNING
15
+ </span>
16
+ </strong>
17
+ </font>
18
 
19
+ This repository is now superseded by [BSC-TeMU/roberta-base-ca-cased](https://huggingface.co/BSC-TeMU/roberta-base-ca-cased). Future updates will be released in the new repository, so it is highly recommended to load the model using the new path:
20
 
21
  ```python
22
  from transformers import AutoModel
23
  model = AutoModel.from_pretrained("BSC-TeMU/roberta-base-ca-cased")
24
  ```
25
 
26
+ From now on, all models and datasets from the BSC's Text Mining Unit will be published on the [official organization account](https://huggingface.co/BSC-TeMU).