File size: 12,068 Bytes
23ccf16
 
 
 
 
 
78ad185
 
 
 
 
 
 
 
 
d60694d
23ccf16
c512b0b
38504df
 
31ce393
23ccf16
c512b0b
9777f8c
c512b0b
a42d89c
c512b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd25f0c
a42d89c
c512b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8ceb7
c512b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3f42e2
c512b0b
b3f42e2
c512b0b
 
 
 
 
 
 
 
b3f42e2
c512b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549eae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
language: "ca"
tags:
- masked-lm
- BERTa
- catalan
widget:
- text: "El Català és una llengua molt <mask>."
- text: "Salvador Dalí va viure a <mask>."
- text: "La Costa Brava té les millors <mask> d'Espanya."
- text: "El cacaolat és un batut de <mask>."
- text: "<mask> és la capital de la Garrotxa."
- text: "Vaig al <mask> a buscar bolets."
- text: "Antoni Gaudí vas ser un <mask> molt important per la ciutat."
- text: "Catalunya és una referència en <mask> a nivell europeu."
license: apache-2.0
---

**⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca

# BERTa: RoBERTa-based Catalan language model

## BibTeX  citation

If you use any of these resources (datasets or models) in your work, please cite our latest paper:

```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.437",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",
}
```


## Model description

BERTa is a transformer-based masked language model for the Catalan language. 
It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model 
and has been trained on a medium-size corpus collected from publicly available corpora and crawlers.

## Training corpora and preprocessing

The training corpus consists of several corpora gathered from web crawling and public corpora.

The publicly available corpora are:

 1. the Catalan part of the [DOGC](http://opus.nlpl.eu/DOGC-v2.php) corpus, a set of documents from the Official Gazette of the Catalan Government
    
 2. the [Catalan Open Subtitles](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/mono/OpenSubtitles.raw.ca.gz), a collection of translated movie subtitles
    
 3. the non-shuffled version of the Catalan part of the [OSCAR](https://traces1.inria.fr/oscar/) corpus \\\\cite{suarez2019asynchronous}, 
    a collection of monolingual corpora, filtered from [Common Crawl](https://commoncrawl.org/about/)
    
 4. The [CaWac](http://nlp.ffzg.hr/resources/corpora/cawac/) corpus, a web corpus of Catalan built from the .cat top-level-domain in late 2013
    the non-deduplicated version

 5. the [Catalan Wikipedia articles](https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/cawiki/20200801/) downloaded on 18-08-2020.

The crawled corpora are:

 6. The Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains
 7. the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government
    
 8. the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the [Catalan News Agency](https://www.acn.cat/)

To obtain a high-quality training corpus, each corpus have preprocessed with a pipeline of operations, including among the others,
sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents.
During the process, we keep document boundaries are kept. 
Finally, the corpora are concatenated and further global deduplication among the corpora is applied.
The final training corpus consists of about 1,8B tokens.


## Tokenization and pretraining 

The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2)
used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. 
The BERTa pretraining consists of a masked language model training that follows the approach employed for the RoBERTa base model
with the same hyperparameters as in the original work.
The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM.

## Evaluation

## CLUB benchmark

The BERTa model has been fine-tuned on the downstream tasks of the Catalan Language Understanding Evaluation benchmark (CLUB),
that has been created along with the model.

It contains the following tasks and their related datasets:

 1. Part-of-Speech Tagging (POS)
    
    Catalan-Ancora: from the [Universal Dependencies treebank](https://github.com/UniversalDependencies/UD_Catalan-AnCora) of the well-known Ancora corpus

 2. Named Entity Recognition (NER)
    
    **[AnCora Catalan 2.0.0](https://zenodo.org/record/4762031#.YKaFjqGxWUk)**: extracted named entities from the original [Ancora](https://doi.org/10.5281/zenodo.4762030) version,
    filtering out some unconventional ones, like book titles, and transcribed them into a standard CONLL-IOB format

 3. Text Classification (TC)
     
    **[TeCla](https://doi.org/10.5281/zenodo.4627197)**: consisting of 137k news pieces from the Catalan News Agency ([ACN](https://www.acn.cat/)) corpus

 4. Semantic Textual Similarity (STS)
    
    **[Catalan semantic textual similarity](https://doi.org/10.5281/zenodo.4529183)**: consisting of more than 3000 sentence pairs, annotated with the semantic similarity between them, 
    scraped from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349)

 5. Question Answering (QA):
    
    **[ViquiQuAD](https://doi.org/10.5281/zenodo.4562344)**: consisting of more than 15,000 questions outsourced from Catalan Wikipedia randomly chosen from a set of 596 articles that were originally written in Catalan.
    
    **[XQuAD](https://doi.org/10.5281/zenodo.4526223)**: the Catalan translation of XQuAD, a multilingual collection of manual translations of 1,190 question-answer pairs from English Wikipedia used only as a _test set_
    
Here are the train/dev/test splits of the datasets:

| Task (Dataset) | Total | Train | Dev  | Test |
|:--|:--|:--|:--|:--|
| NER (Ancora)  |13,581 | 10,628 | 1,427 | 1,526 |
| POS (Ancora)| 16,678 | 13,123 | 1,709 | 1,846 |
| STS         | 3,073 | 2,073 | 500 | 500 |
| TC (TeCla) |  137,775 | 110,203 | 13,786 |  13,786|
| QA (ViquiQuAD) | 14,239  | 11,255  | 1,492  | 1,429 | 
 

_The fine-tuning on downstream tasks have been performed with the HuggingFace [**Transformers**](https://github.com/huggingface/transformers) library_

## Results

Below the evaluation results on the CLUB tasks compared with the multilingual mBERT, XLM-RoBERTa models and 
the Catalan WikiBERT-ca model


| Task        | NER (F1)      | POS (F1)   | STS (Pearson)   | TC (accuracy) | QA (ViquiQuAD) (F1/EM)  | QA (XQuAD) (F1/EM) | 
| ------------|:-------------:| -----:|:------|:-------|:------|:----|
| BERTa       | **88.13** | **98.97** | **79.73** | **74.16** | **86.97/72.29** | **68.89/48.87** |
| mBERT       | 86.38 | 98.82 | 76.34 | 70.56 | 86.97/72.22 | 67.15/46.51 |
| XLM-RoBERTa | 87.66 | 98.89 | 75.40 | 71.68 | 85.50/70.47 | 67.10/46.42 |
| WikiBERT-ca | 77.66 | 97.60 | 77.18 | 73.22 | 85.45/70.75 | 65.21/36.60 |


## Intended uses & limitations
The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section)
However, the is intended to be fine-tuned on non-generative downstream tasks such as Question Answering, Text Classification or Named Entity Recognition.

---

## Using BERTa 
## Load model and tokenizer

``` python
from transformers import AutoTokenizer, AutoModelForMaskedLM
    
tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-ca-cased")

model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-ca-cased")
```

## Fill Mask task

Below, an example of how to use the masked language modelling task with a pipeline.

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='BSC-TeMU/roberta-base-ca-cased')
>>> unmasker("Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
             "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
             "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
             "i pel nord-oest per la serralada de Collserola "
             "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
             "la línia de costa encaixant la ciutat en un perímetre molt definit.")

[
  {
    "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
                "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
                "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
                "i pel nord-oest per la serralada de Collserola "
                "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
                "la línia de costa encaixant la ciutat en un perímetre molt definit.",
    "score": 0.4177263379096985,
    "token": 734,
    "token_str": " Barcelona"
  },
  {
    "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
                "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
                "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
                "i pel nord-oest per la serralada de Collserola "
                "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
                "la línia de costa encaixant la ciutat en un perímetre molt definit.",
    "score": 0.10696165263652802,
    "token": 3849,
    "token_str": " Badalona"
  },
  {
    "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
                "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
                "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
                "i pel nord-oest per la serralada de Collserola "
                "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
                "la línia de costa encaixant la ciutat en un perímetre molt definit.",
    "score": 0.08135009557008743,
    "token": 19349,
    "token_str": " Collserola"
  },
  {
   "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
                "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
                "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
                "i pel nord-oest per la serralada de Collserola "
                "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
                "la línia de costa encaixant la ciutat en un perímetre molt definit.",
    "score": 0.07330769300460815,
    "token": 4974,
    "token_str": " Terrassa"
  },
  {
    "sequence": " Situada a la costa de la mar Mediterrània, <mask> s'assenta en una plana formada "
                "entre els deltes de les desembocadures dels rius Llobregat, al sud-oest, "
                "i Besòs, al nord-est, i limitada pel sud-est per la línia de costa,"
                "i pel nord-oest per la serralada de Collserola "
                "(amb el cim del Tibidabo, 516,2 m, com a punt més alt) que segueix paral·lela "
                "la línia de costa encaixant la ciutat en un perímetre molt definit.",
    "score": 0.03317456692457199,
    "token": 14333,
    "token_str": " Gavà"
  }
]
```

This model was originally published as [bsc/roberta-base-ca-cased](https://huggingface.co/bsc/roberta-base-ca-cased).