--- language: - en license: apache-2.0 tags: - smol_llama - llama2 datasets: - JeanKaddour/minipile - pszemraj/simple_wikipedia_LM - mattymchen/refinedweb-3m - BEE-spoke-data/knowledge-inoc-concat-v1 inference: parameters: max_new_tokens: 64 do_sample: true temperature: 0.8 repetition_penalty: 1.05 no_repeat_ngram_size: 4 eta_cutoff: 0.0006 renormalize_logits: true widget: - text: My name is El Microondas the Wise, and example_title: El Microondas - text: Kennesaw State University is a public example_title: Kennesaw State University - text: Bungie Studios is an American video game developer. They are most famous for developing the award winning Halo series of video games. They also made Destiny. The studio was founded example_title: Bungie - text: The Mona Lisa is a world-renowned painting created by example_title: Mona Lisa - text: The Harry Potter series, written by J.K. Rowling, begins with the book titled example_title: Harry Potter Series - text: 'Question: I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? Answer:' example_title: Riddle - text: The process of photosynthesis involves the conversion of example_title: Photosynthesis - text: Jane went to the store to buy some groceries. She picked up apples, oranges, and a loaf of bread. When she got home, she realized she forgot example_title: Story Continuation - text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph, and another train leaves Station B at 10:00 AM and travels at 80 mph, when will they meet if the distance between the stations is 300 miles? To determine' example_title: Math Problem - text: In the context of computer programming, an algorithm is example_title: Algorithm Definition pipeline_tag: text-generation model-index: - name: smol_llama-220M-GQA results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 24.83 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 29.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.55 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 50.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.68 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA name: Open LLM Leaderboard --- # smol_llama: 220M GQA > model card WIP, more details to come A small 220M param (total) decoder model. This is the first version of the model. - 1024 hidden size, 10 layers - GQA (32 heads, 8 key-value), context length 2048 - train-from-scratch on one GPU :) ## Links [Here](https://huggingface.co/collections/BEE-spoke-data/finetuned-smol-220m-65998b080ae723e79c830f83) are some fine-tunes we did, but there are many more possibilities out there! - instruct - openhermes - [link](https://huggingface.co/BEE-spoke-data/smol_llama-220M-openhermes) - open-instruct - [link](https://huggingface.co/BEE-spoke-data/smol_llama-220M-open_instruct) - code - python (pypi) - [link](https://huggingface.co/BEE-spoke-data/beecoder-220M-python) - zephyr DPO tune - SFT - [link](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full) - full DPO - [link](https://huggingface.co/BEE-spoke-data/zephyr-220m-dpo-full) --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-GQA) | Metric |Value| |---------------------------------|----:| |Avg. |29.44| |AI2 Reasoning Challenge (25-Shot)|24.83| |HellaSwag (10-Shot) |29.76| |MMLU (5-Shot) |25.85| |TruthfulQA (0-shot) |44.55| |Winogrande (5-shot) |50.99| |GSM8k (5-shot) | 0.68|