File size: 9,186 Bytes
ac53d81
 
 
18c32bd
 
 
 
 
 
 
 
 
ac53d81
 
 
 
 
 
 
 
 
 
ad2f9c8
ac53d81
 
 
18c32bd
 
 
ac53d81
 
 
18c32bd
ac53d81
18c32bd
ac53d81
 
18c32bd
ac53d81
 
 
18c32bd
ac53d81
 
18c32bd
 
ac53d81
 
18c32bd
ac53d81
 
 
 
18c32bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7e029a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac53d81
 
 
 
 
 
 
 
 
 
 
 
1bbcda0
 
9aa47c0
1bbcda0
 
 
 
 
063ec79
6366b24
 
 
ac53d81
 
18c32bd
 
 
 
 
 
 
 
 
 
 
 
 
 
d7e029a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
language:
- en
license: apache-2.0
tags:
- smol_llama
- llama2
datasets:
- JeanKaddour/minipile
- pszemraj/simple_wikipedia_LM
- mattymchen/refinedweb-3m
- BEE-spoke-data/knowledge-inoc-concat-v1
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    temperature: 0.8
    repetition_penalty: 1.05
    no_repeat_ngram_size: 4
    eta_cutoff: 0.0006
    renormalize_logits: true
widget:
- text: My name is El Microondas the Wise, and
  example_title: El Microondas
- text: Kennesaw State University is a public
  example_title: Kennesaw State University
- text: Bungie Studios is an American video game developer. They are most famous for
    developing the award winning Halo series of video games. They also made Destiny.
    The studio was founded
  example_title: Bungie
- text: The Mona Lisa is a world-renowned painting created by
  example_title: Mona Lisa
- text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
  example_title: Harry Potter Series
- text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
    have water, but no fish. What am I?

    Answer:'
  example_title: Riddle
- text: The process of photosynthesis involves the conversion of
  example_title: Photosynthesis
- text: Jane went to the store to buy some groceries. She picked up apples, oranges,
    and a loaf of bread. When she got home, she realized she forgot
  example_title: Story Continuation
- text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
    and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
    they meet if the distance between the stations is 300 miles?

    To determine'
  example_title: Math Problem
- text: In the context of computer programming, an algorithm is
  example_title: Algorithm Definition
pipeline_tag: text-generation
model-index:
- name: smol_llama-220M-GQA
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 24.83
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 29.76
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.55
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.68
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 23.86
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 3.04
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.78
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.07
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA
      name: Open LLM Leaderboard
---


# smol_llama: 220M GQA


A small 220M param (total) decoder model. This is the first version of the model.

- 1024 hidden size, 10 layers
- GQA (32 heads, 8 key-value), context length 2048
- train-from-scratch on one GPU :)

## Links 

[Here](https://huggingface.co/collections/BEE-spoke-data/finetuned-smol-220m-65998b080ae723e79c830f83) are some fine-tunes we did, but there are many more possibilities out there!

- instruct
  - openhermes - [link](https://huggingface.co/BEE-spoke-data/smol_llama-220M-openhermes)
  - open-instruct - [link](https://huggingface.co/BEE-spoke-data/smol_llama-220M-open_instruct)
- code
  - python (pypi) - [link](https://huggingface.co/BEE-spoke-data/beecoder-220M-python)
- zephyr DPO tune
  - SFT - [link](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full)
  - full DPO - [link](https://huggingface.co/BEE-spoke-data/zephyr-220m-dpo-full)

---

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-GQA)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |29.44|
|AI2 Reasoning Challenge (25-Shot)|24.83|
|HellaSwag (10-Shot)              |29.76|
|MMLU (5-Shot)                    |25.85|
|TruthfulQA (0-shot)              |44.55|
|Winogrande (5-shot)              |50.99|
|GSM8k (5-shot)                   | 0.68|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-GQA)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 6.62|
|IFEval (0-Shot)    |23.86|
|BBH (3-Shot)       | 3.04|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot)      | 0.78|
|MuSR (0-shot)      | 9.07|
|MMLU-PRO (5-shot)  | 1.66|