chrisociepa
commited on
Commit
·
6b778ce
1
Parent(s):
869919c
Update README.md
Browse files
README.md
CHANGED
@@ -106,22 +106,38 @@ Our training dataset contains:
|
|
106 |
* Polish Wikipedia: 970 million tokens
|
107 |
* web crawl data: 813 million tokens
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
```python
|
116 |
-
import
|
117 |
-
|
|
|
118 |
```
|
119 |
|
120 |
-
|
121 |
|
122 |
```python
|
123 |
import transformers
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
```
|
126 |
|
127 |
## Limitations and Biases
|
|
|
106 |
* Polish Wikipedia: 970 million tokens
|
107 |
* web crawl data: 813 million tokens
|
108 |
|
109 |
+
### Quickstart
|
110 |
|
111 |
+
This model can be easily loaded using the AutoModelForCausalLM functionality.
|
112 |
|
113 |
+
```python
|
114 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
115 |
+
|
116 |
+
model_name = "Azurro/APT-1B-Base"
|
117 |
+
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
119 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
120 |
+
```
|
121 |
+
|
122 |
+
In order to reduce the memory usage, you can use smaller precision (`bfloat16`).
|
123 |
|
124 |
```python
|
125 |
+
import torch
|
126 |
+
|
127 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
128 |
```
|
129 |
|
130 |
+
And then you can use Hugging Face Pipelines to generate text.
|
131 |
|
132 |
```python
|
133 |
import transformers
|
134 |
+
|
135 |
+
text = "Najważniejszym celem człowieka na ziemi jest"
|
136 |
+
|
137 |
+
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
|
138 |
+
sequences = pipeline(max_length=100, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
139 |
+
for seq in sequences:
|
140 |
+
print(f"Result: {seq['generated_text']}")
|
141 |
```
|
142 |
|
143 |
## Limitations and Biases
|