pure-deberta-large / configuration_pure_deberta.py
yangwang825's picture
Upload config
c700a08 verified
raw
history blame
2.84 kB
from transformers import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class PureDebertaConfig(PretrainedConfig):
model_type = "pure_deberta"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=0,
initializer_range=0.02,
layer_norm_eps=1e-7,
relative_attention=False,
max_relative_positions=-1,
pad_token_id=0,
position_biased_input=True,
pos_att_type=None,
pooler_dropout=0,
pooler_hidden_act="gelu",
svd_rank=5, # A slightly overestimated rank of token embedding matrix
num_pc_to_remove=1, # Number of principal component to remove
center=False, # If True, centre the input token embedding matrix
num_iters=2, # Number of subspace iterations to conduct
alpha=1, # Feature expression factor in parameter-free self-attention module
disable_pcr=False,
disable_pfsa=False,
disable_covariance=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.relative_attention = relative_attention
self.max_relative_positions = max_relative_positions
self.pad_token_id = pad_token_id
self.position_biased_input = position_biased_input
# Backwards compatibility
if isinstance(pos_att_type, str):
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
self.pos_att_type = pos_att_type
self.vocab_size = vocab_size
self.layer_norm_eps = layer_norm_eps
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
self.pooler_dropout = pooler_dropout
self.pooler_hidden_act = pooler_hidden_act
self.svd_rank = svd_rank
self.num_pc_to_remove = num_pc_to_remove
self.center = center
self.num_iters = num_iters
self.alpha = alpha
self.disable_pcr = disable_pcr
self.disable_pfsa = disable_pfsa
self.disable_covariance = disable_covariance