--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-OT results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8317757009345794 --- # beit-base-patch16-224-OT This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5393 - Accuracy: 0.8318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 0.6887 | 0.5888 | | 0.692 | 2.0 | 16 | 0.6782 | 0.5888 | | 0.6801 | 3.0 | 24 | 0.6669 | 0.5888 | | 0.6696 | 4.0 | 32 | 0.6644 | 0.5888 | | 0.6607 | 5.0 | 40 | 0.6661 | 0.6636 | | 0.6607 | 6.0 | 48 | 0.6241 | 0.6542 | | 0.6341 | 7.0 | 56 | 0.6235 | 0.6542 | | 0.6089 | 8.0 | 64 | 0.6088 | 0.6916 | | 0.6095 | 9.0 | 72 | 0.5912 | 0.6916 | | 0.5632 | 10.0 | 80 | 0.6607 | 0.6355 | | 0.5632 | 11.0 | 88 | 0.5793 | 0.7009 | | 0.5418 | 12.0 | 96 | 0.5953 | 0.6822 | | 0.5336 | 13.0 | 104 | 0.5793 | 0.7103 | | 0.5102 | 14.0 | 112 | 0.5292 | 0.7196 | | 0.4762 | 15.0 | 120 | 0.6558 | 0.7009 | | 0.4762 | 16.0 | 128 | 0.5371 | 0.7103 | | 0.544 | 17.0 | 136 | 0.5401 | 0.7570 | | 0.4256 | 18.0 | 144 | 0.4927 | 0.7944 | | 0.4082 | 19.0 | 152 | 0.5801 | 0.7383 | | 0.4014 | 20.0 | 160 | 0.5823 | 0.7383 | | 0.4014 | 21.0 | 168 | 0.5393 | 0.7757 | | 0.3483 | 22.0 | 176 | 0.5941 | 0.7103 | | 0.3121 | 23.0 | 184 | 0.5569 | 0.7383 | | 0.3484 | 24.0 | 192 | 0.5975 | 0.7664 | | 0.263 | 25.0 | 200 | 0.6544 | 0.7570 | | 0.263 | 26.0 | 208 | 0.5744 | 0.7757 | | 0.2633 | 27.0 | 216 | 0.6095 | 0.7664 | | 0.2935 | 28.0 | 224 | 0.5286 | 0.7664 | | 0.2332 | 29.0 | 232 | 0.6028 | 0.7850 | | 0.2314 | 30.0 | 240 | 0.5935 | 0.7944 | | 0.2314 | 31.0 | 248 | 0.5393 | 0.8318 | | 0.202 | 32.0 | 256 | 0.5556 | 0.8224 | | 0.2127 | 33.0 | 264 | 0.5913 | 0.8037 | | 0.2035 | 34.0 | 272 | 0.5337 | 0.8037 | | 0.2618 | 35.0 | 280 | 0.6221 | 0.8037 | | 0.2618 | 36.0 | 288 | 0.5090 | 0.8318 | | 0.217 | 37.0 | 296 | 0.5649 | 0.8224 | | 0.2111 | 38.0 | 304 | 0.5683 | 0.8131 | | 0.2085 | 39.0 | 312 | 0.5398 | 0.8224 | | 0.1912 | 40.0 | 320 | 0.5548 | 0.8224 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0