xttsv2 / tokenizer.py
mlinmg's picture
Upload 13 files
73465f7 verified
raw
history blame
28.2 kB
import os
import re
import textwrap
from typing import List, Optional, Union, Dict, Any
from functools import cached_property
import pypinyin
import torch
from hangul_romanize import Transliter
from hangul_romanize.rule import academic
from num2words import num2words
from spacy.lang.ar import Arabic
from spacy.lang.en import English
from spacy.lang.es import Spanish
from spacy.lang.ja import Japanese
from spacy.lang.zh import Chinese
from transformers import PreTrainedTokenizerFast, BatchEncoding
from transformers.tokenization_utils_base import TruncationStrategy, PaddingStrategy
from tokenizers import Tokenizer
from tokenizers.pre_tokenizers import WhitespaceSplit
from tokenizers.processors import TemplateProcessing
from TTS.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words
import cutlet
# Funzioni di preprocessing del testo
def get_spacy_lang(lang):
if lang == "zh":
return Chinese()
elif lang == "ja":
return Japanese()
elif lang == "ar":
return Arabic()
elif lang == "es":
return Spanish()
else:
# For most languages, English does the job
return English()
def split_sentence(text, lang, text_split_length=250):
"""Preprocess the input text and split into sentences based on language."""
text_splits = []
if text_split_length is not None and len(text) >= text_split_length:
text_splits.append("")
nlp = get_spacy_lang(lang)
nlp.add_pipe("sentencizer")
doc = nlp(text)
for sentence in doc.sents:
if len(text_splits[-1]) + len(str(sentence)) <= text_split_length:
text_splits[-1] += " " + str(sentence)
text_splits[-1] = text_splits[-1].lstrip()
elif len(str(sentence)) > text_split_length:
for line in textwrap.wrap(
str(sentence),
width=text_split_length,
drop_whitespace=True,
break_on_hyphens=False,
tabsize=1,
):
text_splits.append(str(line))
else:
text_splits.append(str(sentence))
if len(text_splits) > 1 and text_splits[0] == "":
del text_splits[0]
else:
text_splits = [text.lstrip()]
return text_splits
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = {
"en": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
],
"es": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("sra", "señora"),
("sr", "señor"),
("dr", "doctor"),
("dra", "doctora"),
("st", "santo"),
("co", "compañía"),
("jr", "junior"),
("ltd", "limitada"),
]
],
"fr": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mme", "madame"),
("mr", "monsieur"),
("dr", "docteur"),
("st", "saint"),
("co", "compagnie"),
("jr", "junior"),
("ltd", "limitée"),
]
],
"de": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("fr", "frau"),
("dr", "doktor"),
("st", "sankt"),
("co", "firma"),
("jr", "junior"),
]
],
"pt": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("sra", "senhora"),
("sr", "senhor"),
("dr", "doutor"),
("dra", "doutora"),
("st", "santo"),
("co", "companhia"),
("jr", "júnior"),
("ltd", "limitada"),
]
],
"it": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# ("sig.ra", "signora"),
("sig", "signore"),
("dr", "dottore"),
("st", "santo"),
("co", "compagnia"),
("jr", "junior"),
("ltd", "limitata"),
]
],
"pl": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("p", "pani"),
("m", "pan"),
("dr", "doktor"),
("sw", "święty"),
("jr", "junior"),
]
],
"ar": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# There are not many common abbreviations in Arabic as in English.
]
],
"zh": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# Chinese doesn't typically use abbreviations in the same way as Latin-based scripts.
]
],
"cs": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dr", "doktor"), # doctor
("ing", "inženýr"), # engineer
("p", "pan"), # Could also map to pani for woman but no easy way to do it
# Other abbreviations would be specialized and not as common.
]
],
"ru": [
(re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1])
for x in [
("г-жа", "госпожа"), # Mrs.
("г-н", "господин"), # Mr.
("д-р", "доктор"), # doctor
# Other abbreviations are less common or specialized.
]
],
"nl": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dhr", "de heer"), # Mr.
("mevr", "mevrouw"), # Mrs.
("dr", "dokter"), # doctor
("jhr", "jonkheer"), # young lord or nobleman
# Dutch uses more abbreviations, but these are the most common ones.
]
],
"tr": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("b", "bay"), # Mr.
("byk", "büyük"), # büyük
("dr", "doktor"), # doctor
# Add other Turkish abbreviations here if needed.
]
],
"hu": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("dr", "doktor"), # doctor
("b", "bácsi"), # Mr.
("nőv", "nővér"), # nurse
# Add other Hungarian abbreviations here if needed.
]
],
"ko": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
# Korean doesn't typically use abbreviations in the same way as Latin-based scripts.
]
],
}
def expand_abbreviations_multilingual(text, lang="en"):
if lang in _abbreviations:
for regex, replacement in _abbreviations[lang]:
text = re.sub(regex, replacement, text)
return text
_symbols_multilingual = {
"en": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " and "),
("@", " at "),
("%", " percent "),
("#", " hash "),
("$", " dollar "),
("£", " pound "),
("°", " degree "),
]
],
"es": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " y "),
("@", " arroba "),
("%", " por ciento "),
("#", " numeral "),
("$", " dolar "),
("£", " libra "),
("°", " grados "),
]
],
"fr": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " et "),
("@", " arobase "),
("%", " pour cent "),
("#", " dièse "),
("$", " dollar "),
("£", " livre "),
("°", " degrés "),
]
],
"de": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " und "),
("@", " at "),
("%", " prozent "),
("#", " raute "),
("$", " dollar "),
("£", " pfund "),
("°", " grad "),
]
],
"pt": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " e "),
("@", " arroba "),
("%", " por cento "),
("#", " cardinal "),
("$", " dólar "),
("£", " libra "),
("°", " graus "),
]
],
"it": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " e "),
("@", " chiocciola "),
("%", " per cento "),
("#", " cancelletto "),
("$", " dollaro "),
("£", " sterlina "),
("°", " gradi "),
]
],
"pl": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " i "),
("@", " małpa "),
("%", " procent "),
("#", " krzyżyk "),
("$", " dolar "),
("£", " funt "),
("°", " stopnie "),
]
],
"ar": [
# Arabic
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " و "),
("@", " على "),
("%", " في المئة "),
("#", " رقم "),
("$", " دولار "),
("£", " جنيه "),
("°", " درجة "),
]
],
"zh": [
# Chinese
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " 和 "),
("@", " 在 "),
("%", " 百分之 "),
("#", " 号 "),
("$", " 美元 "),
("£", " 英镑 "),
("°", " 度 "),
]
],
"cs": [
# Czech
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " a "),
("@", " na "),
("%", " procento "),
("#", " křížek "),
("$", " dolar "),
("£", " libra "),
("°", " stupně "),
]
],
"ru": [
# Russian
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " и "),
("@", " собака "),
("%", " процентов "),
("#", " номер "),
("$", " доллар "),
("£", " фунт "),
("°", " градус "),
]
],
"nl": [
# Dutch
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " en "),
("@", " bij "),
("%", " procent "),
("#", " hekje "),
("$", " dollar "),
("£", " pond "),
("°", " graden "),
]
],
"tr": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " ve "),
("@", " at "),
("%", " yüzde "),
("#", " diyez "),
("$", " dolar "),
("£", " sterlin "),
("°", " derece "),
]
],
"hu": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " és "),
("@", " kukac "),
("%", " százalék "),
("#", " kettőskereszt "),
("$", " dollár "),
("£", " font "),
("°", " fok "),
]
],
"ko": [
# Korean
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " 그리고 "),
("@", " 에 "),
("%", " 퍼센트 "),
("#", " 번호 "),
("$", " 달러 "),
("£", " 파운드 "),
("°", " 도 "),
]
],
}
def expand_symbols_multilingual(text, lang="en"):
if lang in _symbols_multilingual:
for regex, replacement in _symbols_multilingual[lang]:
text = re.sub(regex, replacement, text)
text = text.replace(" ", " ") # Ensure there are no double spaces
return text.strip()
_ordinal_re = {
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
"es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"),
"fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"),
"de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"),
"pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"),
"it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"),
"pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"),
"ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"),
"cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals.
"ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"),
"nl": re.compile(r"([0-9]+)(de|ste|e)"),
"tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"),
"hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"),
"ko": re.compile(r"([0-9]+)(번째|번|차|째)"),
}
_number_re = re.compile(r"[0-9]+")
_currency_re = {
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
}
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
_dot_number_re = re.compile(r"\b\d{1,3}(\.\d{3})*(\,\d+)?\b")
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
def _remove_commas(m):
text = m.group(0)
if "," in text:
text = text.replace(",", "")
return text
def _remove_dots(m):
text = m.group(0)
if "." in text:
text = text.replace(".", "")
return text
def _expand_decimal_point(m, lang="en"):
amount = m.group(1).replace(",", ".")
return num2words(float(amount), lang=lang if lang != "cs" else "cz")
def _expand_currency(m, lang="en", currency="USD"):
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz")
and_equivalents = {
"en": ", ",
"es": " con ",
"fr": " et ",
"de": " und ",
"pt": " e ",
"it": " e ",
"pl": ", ",
"cs": ", ",
"ru": ", ",
"nl": ", ",
"ar": ", ",
"tr": ", ",
"hu": ", ",
"ko": ", ",
}
if amount.is_integer():
last_and = full_amount.rfind(and_equivalents.get(lang, ", "))
if last_and != -1:
full_amount = full_amount[:last_and]
return full_amount
def _expand_ordinal(m, lang="en"):
return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz")
def _expand_number(m, lang="en"):
return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz")
def expand_numbers_multilingual(text, lang="en"):
if lang == "zh":
text = zh_num2words()(text)
else:
if lang in ["en", "ru"]:
text = re.sub(_comma_number_re, _remove_commas, text)
else:
text = re.sub(_dot_number_re, _remove_dots, text)
try:
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
except Exception as e:
pass
if lang != "tr":
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
if lang in _ordinal_re:
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def multilingual_cleaners(text, lang):
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
text = lowercase(text)
text = expand_numbers_multilingual(text, lang)
text = expand_abbreviations_multilingual(text, lang)
text = expand_symbols_multilingual(text, lang=lang)
text = collapse_whitespace(text)
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def chinese_transliterate(text):
return "".join(
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
)
def japanese_cleaners(text, katsu):
text = katsu.romaji(text)
text = lowercase(text)
return text
def korean_transliterate(text, transliter):
return transliter.translit(text)
# Fast Tokenizer Class
class XTTSTokenizerFast(PreTrainedTokenizerFast):
"""
Fast Tokenizer implementation for XTTS model using HuggingFace's PreTrainedTokenizerFast
"""
def __init__(
self,
vocab_file: str = None,
tokenizer_object: Optional[Tokenizer] = None,
unk_token: str = "[UNK]",
pad_token: str = "[PAD]",
bos_token: str = "[START]",
eos_token: str = "[STOP]",
auto_map: dict = {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", None]},
clean_up_tokenization_spaces: bool = True,
**kwargs
):
if tokenizer_object is None and vocab_file is not None:
tokenizer_object = Tokenizer.from_file(vocab_file)
if tokenizer_object is not None:
# Configure the tokenizer
tokenizer_object.pre_tokenizer = WhitespaceSplit()
tokenizer_object.post_processor = TemplateProcessing(
single=f"{bos_token} $A {eos_token}",
special_tokens=[
(bos_token, tokenizer_object.token_to_id(bos_token)),
(eos_token, tokenizer_object.token_to_id(eos_token)),
],
)
super().__init__(
tokenizer_object=tokenizer_object,
unk_token=unk_token,
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs
)
# Character limits per language
self.char_limits = {
"en": 250, "de": 253, "fr": 273, "es": 239,
"it": 213, "pt": 203, "pl": 224, "zh": 82,
"ar": 166, "cs": 186, "ru": 182, "nl": 251,
"tr": 226, "ja": 71, "hu": 224, "ko": 95,
}
# Initialize language tools
self._katsu = None
self._korean_transliter = Transliter(academic)
# Ensure pad_token_id is set
if self.pad_token_id is None:
self.pad_token_id = self.tokenizer.token_to_id(self.pad_token)
@cached_property
def katsu(self):
if self._katsu is None:
self._katsu = cutlet.Cutlet()
return self._katsu
def preprocess_text(self, text: str, lang: str) -> str:
"""Apply text preprocessing for language"""
base_lang = lang.split("-")[0] # remove region
if base_lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it",
"nl", "pl", "pt", "ru", "tr", "zh", "ko"}:
text = multilingual_cleaners(text, base_lang)
if base_lang == "zh":
text = chinese_transliterate(text)
if base_lang == "ko":
text = korean_transliterate(text, self._korean_transliter)
elif base_lang == "ja":
text = japanese_cleaners(text, self.katsu)
else:
text = basic_cleaners(text)
return text
def batch_encode_with_split(self, texts: Union[str, List[str]], lang: Union[str, List[str]],
**kwargs) -> torch.Tensor:
"""
Split texts into smaller chunks based on language character limits and encode them using HuggingFace fast tokenizer.
strictly mimic the xttsv2 tokenizer
"""
# Convert single inputs to lists
if isinstance(texts, str):
texts = [texts]
if isinstance(lang, str):
lang = [lang]
# Ensure lang list matches texts list
if len(lang) == 1 and len(texts) > 1:
lang = lang * len(texts)
# Check if texts and lang have the same length
if len(texts) != len(lang):
raise ValueError(f"Number of texts ({len(texts)}) does not match number of languages ({len(lang)}).")
chunk_list = []
max_splits = 0
# For each text, split into chunks based on character limit
for text, text_lang in zip(texts, lang):
# Get language character limit
base_lang = text_lang.split("-")[0]
char_limit = self.char_limits.get(base_lang, 250)
# Clean and preprocess
text = self.preprocess_text(text, text_lang)
# Split text into sentences/chunks based on language
chunk_list = split_sentence(text, base_lang, text_split_length=char_limit)
# Ensure the tokenizer is a fast tokenizer
if not self.is_fast:
raise ValueError("The tokenizer must be a fast tokenizer.")
# Encode all chunks using the fast tokenizer
encoding: BatchEncoding = self(
chunk_list,
lang = lang,
add_special_tokens=False,
padding=False,
**kwargs
)
# The 'input_ids' tensor will have shape [total_chunks, max_sequence_length]
return encoding['input_ids'] # Tensor of shape [total_chunks, sequence_length]
def _batch_encode_plus(
self,
batch_text_or_text_pairs,
add_special_tokens: bool = True,
padding_strategy=PaddingStrategy.DO_NOT_PAD,
truncation_strategy=TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> Dict[str, Any]:
"""
Override batch encoding to handle language-specific preprocessing
"""
lang = kwargs.pop("lang", ["en"] * len(batch_text_or_text_pairs))
if isinstance(lang, str):
lang = [lang]
# Ensure lang list matches texts list
if len(lang) == 1 and len(batch_text_or_text_pairs) > 1:
lang = lang * len(batch_text_or_text_pairs)
# Check if batch_text_or_text_pairs and lang have the same length
if len(batch_text_or_text_pairs) != len(lang):
raise ValueError(f"Number of texts ({len(batch_text_or_text_pairs)}) does not match number of languages ({len(lang)}).")
# Preprocess each text in the batch with its corresponding language
processed_texts = []
for text, text_lang in zip(batch_text_or_text_pairs, lang):
if isinstance(text, str):
# Check length and preprocess
#self.check_input_length(text, text_lang)
processed_text = self.preprocess_text(text, text_lang)
# Format text with language tag and spaces
base_lang = text_lang.split("-")[0]
lang_code = "zh-cn" if base_lang == "zh" else base_lang
processed_text = f"[{lang_code}]{processed_text}"
processed_text = processed_text.replace(" ", "[SPACE]")
processed_texts.append(processed_text)
else:
processed_texts.append(text)
# Call the parent class's encoding method with processed texts
return super()._batch_encode_plus(
processed_texts,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs
)
def __call__(
self,
text: Union[str, List[str]],
lang: Union[str, List[str]] = "en",
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = True,
**kwargs
):
"""
Main tokenization method
"""
# Convert single string to list for batch processing
if isinstance(text, str):
text = [text]
if isinstance(lang, str):
lang = [lang]
# Ensure lang list matches texts list
if len(lang) == 1 and len(text) > 1:
lang = lang * len(text)
# Ensure text and lang lists have same length
if len(text) != len(lang):
raise ValueError(f"Number of texts ({len(text)}) does not match number of languages ({len(lang)}).")
# Convert padding strategy
if isinstance(padding, bool):
padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD
else:
padding_strategy = PaddingStrategy(padding)
# Convert truncation strategy
if isinstance(truncation, bool):
truncation_strategy = TruncationStrategy.LONGEST_FIRST if truncation else TruncationStrategy.DO_NOT_TRUNCATE
else:
truncation_strategy = TruncationStrategy(truncation)
# Use the batch encoding method
encoded = self._batch_encode_plus(
text,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
lang=lang,
**kwargs
)
return encoded