Ashegh-Sad-Warrior commited on
Commit
3c16880
·
verified ·
1 Parent(s): cd839aa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # README File Content for Hugging Face
2
+
3
+ # YOLO Aerial Detection Model
4
+
5
+ This repository contains a YOLO-based model for aerial object detection. The model is trained to detect and classify various objects from aerial images, such as planes, ships, vehicles, and more. Below are the details and visualizations regarding the performance of the model.
6
+
7
+ ## Model Description
8
+
9
+ - **Model Name**: YOLO Aerial Mine Detection
10
+ - **Framework**: Ultralytics YOLOv8
11
+ - **Languages**: English, Persian
12
+ - **Classes Detected**:
13
+ - Plane (هواپیما)
14
+ - Ship (کشتی)
15
+ - Storage Tank (مخزن ذخیره)
16
+ - Baseball Diamond (زمین بیسبال)
17
+ - Tennis Court (زمین تنیس)
18
+ - Basketball Court (زمین بسکتبال)
19
+ - Ground Track Field (زمین دو و میدانی)
20
+ - Harbor (بندرگاه)
21
+ - Bridge (پل)
22
+ - Large Vehicle (خودرو بزرگ)
23
+ - Small Vehicle (خودرو کوچک)
24
+ - Helicopter (هلیکوپتر)
25
+ - Roundabout (میدان)
26
+ - Soccer Ball Field (زمین فوتبال)
27
+ - Swimming Pool (استخر شنا)
28
+
29
+ ## Training Details
30
+
31
+ - **Dataset**: Custom aerial images annotated for object detection.
32
+ - **Metrics**: Precision, Recall, [email protected], F1 Score
33
+ - **Training Environment**: Kaggle, GPU-accelerated environment
34
+ - **Optimizer**: SGD
35
+ - **Libraries Used**:
36
+ - **Ultralytics**: YOLOv8 (version 8.0.0)
37
+ - **Gradio**: For creating the user interface (version 3.1.4)
38
+ - **Pandas**: For data handling (version 1.3.3)
39
+ - **Pillow**: For image manipulation (version 8.4.0)
40
+ - **OpenCV**: For video processing (version 4.5.3)
41
+
42
+ ## Evaluation Results
43
+
44
+ Below are the various evaluation results obtained during the training and testing phases of the model.
45
+
46
+ ### F1-Confidence Curve
47
+ ![F1-Confidence Curve](F1_curve.png)
48
+
49
+ ### Precision-Confidence Curve
50
+ ![Precision-Confidence Curve](P_curve.png)
51
+
52
+ ### Precision-Recall Curve
53
+ ![Precision-Recall Curve](PR_curve.png)
54
+
55
+ ### Recall-Confidence Curve
56
+ ![Recall-Confidence Curve](R_curve.png)
57
+
58
+ ### Confusion Matrix
59
+ ![Confusion Matrix](confusion_matrix.png)
60
+
61
+ ### Labels Correlogram
62
+ ![Labels Correlogram](labels_correlogram.jpg)
63
+
64
+ ### Labels Distribution
65
+ ![Labels Distribution](labels.jpg)
66
+
67
+ ## How to Use
68
+
69
+ 1. Clone this repository.
70
+ 2. Load the model using the Ultralytics YOLO library.
71
+ 3. Use the model for object detection on aerial images.
72
+
73
+ python
74
+ from ultralytics import YOLO
75
+
76
+ # Load the trained model
77
+ yolo_model = YOLO('yolo11n-obb.pt')
78
+
79
+ # Perform detection
80
+ yolo_model('test_image.jpg')
81
+
82
+
83
+
84
+ ## License
85
+ This model is open-sourced under the MIT License.
86
+
87
+ ## Acknowledgements
88
+ Special thanks to the Kaggle community and Hugging Face for providing tools and platforms for developing and sharing this project.