--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6333 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2417 | 1.0 | 57 | 2.1896 | 0.42 | | 1.8003 | 2.0 | 114 | 1.6369 | 0.52 | | 1.3938 | 3.0 | 171 | 1.2560 | 0.72 | | 1.2724 | 4.0 | 228 | 1.1942 | 0.68 | | 0.9682 | 5.0 | 285 | 0.8864 | 0.8 | | 0.7111 | 6.0 | 342 | 0.7542 | 0.82 | | 0.6339 | 7.0 | 399 | 0.7712 | 0.81 | | 0.4599 | 8.0 | 456 | 0.6080 | 0.84 | | 0.3261 | 9.0 | 513 | 0.5998 | 0.84 | | 0.2991 | 10.0 | 570 | 0.6767 | 0.79 | | 0.1615 | 11.0 | 627 | 0.5817 | 0.87 | | 0.0854 | 12.0 | 684 | 0.5859 | 0.83 | | 0.0752 | 13.0 | 741 | 0.5681 | 0.85 | | 0.0341 | 14.0 | 798 | 0.5916 | 0.88 | | 0.0331 | 15.0 | 855 | 0.6028 | 0.87 | | 0.02 | 16.0 | 912 | 0.6283 | 0.85 | | 0.0175 | 17.0 | 969 | 0.6103 | 0.88 | | 0.0151 | 18.0 | 1026 | 0.6244 | 0.88 | | 0.014 | 19.0 | 1083 | 0.6293 | 0.86 | | 0.0181 | 20.0 | 1140 | 0.6333 | 0.87 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3