File size: 2,402 Bytes
8f05d89
 
 
 
 
 
f9234e4
 
 
 
 
8f05d89
 
 
 
 
 
 
 
 
 
 
f9234e4
 
 
 
 
 
8f05d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9234e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f05d89
 
f9234e4
 
862285b
7673c8d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- mn
base_model: bayartsogt/mongolian-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-ner-demo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-ner-demo

This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1231
- Precision: 0.9199
- Recall: 0.9222
- F1: 0.9210
- Accuracy: 0.9811

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1804        | 1.0   | 477  | 0.0823          | 0.8069    | 0.8646 | 0.8347 | 0.9712   |
| 0.0667        | 2.0   | 954  | 0.0779          | 0.8221    | 0.8807 | 0.8504 | 0.9738   |
| 0.0392        | 3.0   | 1431 | 0.0953          | 0.8444    | 0.8853 | 0.8644 | 0.9744   |
| 0.0205        | 4.0   | 1908 | 0.0942          | 0.9201    | 0.9148 | 0.9175 | 0.9802   |
| 0.0113        | 5.0   | 2385 | 0.1011          | 0.9168    | 0.9213 | 0.9191 | 0.9812   |
| 0.0093        | 6.0   | 2862 | 0.1053          | 0.9087    | 0.9183 | 0.9135 | 0.9805   |
| 0.007         | 7.0   | 3339 | 0.1162          | 0.9211    | 0.9213 | 0.9212 | 0.9815   |
| 0.0037        | 8.0   | 3816 | 0.1230          | 0.9167    | 0.9202 | 0.9185 | 0.9806   |
| 0.0025        | 9.0   | 4293 | 0.1215          | 0.9198    | 0.9229 | 0.9213 | 0.9813   |
| 0.0022        | 10.0  | 4770 | 0.1231          | 0.9199    | 0.9222 | 0.9210 | 0.9811   |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1