--- license: mit language: ["ru"] tags: - russian - classification - emotion - emotion-detection - emotion-recognition - multiclass widget: - text: "Как дела?" - text: "Дурак твой дед" - text: "Только попробуй!!!" - text: "Не хочу в школу(" - text: "Сейчас ровно час дня" - text: "А ты уверен, что эти полоски снизу не врут? Точно уверен? Вот прям 100 процентов?" datasets: - Aniemore/cedr-m7 model-index: - name: RuBERT tiny2 For Russian Text Emotion Detection by Ilya Lubenets results: - task: name: Multilabel Text Classification type: multilabel-text-classification dataset: name: CEDR M7 type: Aniemore/cedr-m7 args: ru metrics: - name: multilabel accuracy type: accuracy value: 85% - task: name: Text Classification type: text-classification dataset: name: CEDR M7 type: Aniemore/cedr-m7 args: ru metrics: - name: accuracy type: accuracy value: 76% --- # First - you should prepare few functions to talk to model ```python import torch from transformers import BertForSequenceClassification, AutoTokenizer LABELS = ['neutral', 'happiness', 'sadness', 'enthusiasm', 'fear', 'anger', 'disgust'] tokenizer = AutoTokenizer.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection') model = BertForSequenceClassification.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection') @torch.no_grad() def predict_emotion(text: str) -> str: """ We take the input text, tokenize it, pass it through the model, and then return the predicted label :param text: The text to be classified :type text: str :return: The predicted emotion """ inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) predicted = torch.argmax(predicted, dim=1).numpy() return LABELS[predicted[0]] @torch.no_grad() def predict_emotions(text: str) -> list: """ It takes a string of text, tokenizes it, feeds it to the model, and returns a dictionary of emotions and their probabilities :param text: The text you want to classify :type text: str :return: A dictionary of emotions and their probabilities. """ inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) emotions_list = {} for i in range(len(predicted.numpy()[0].tolist())): emotions_list[LABELS[i]] = predicted.numpy()[0].tolist()[i] return emotions_list ``` # And then - just gently ask a model to predict your emotion ```python simple_prediction = predict_emotion("Какой же сегодня прекрасный день, братья") not_simple_prediction = predict_emotions("Какой же сегодня прекрасный день, братья") print(simple_prediction) print(not_simple_prediction) # happiness # {'neutral': 0.0004941817605867982, 'happiness': 0.9979524612426758, 'sadness': 0.0002536600804887712, 'enthusiasm': 0.0005498139653354883, 'fear': 0.00025326196919195354, 'anger': 0.0003583927755244076, 'disgust': 0.00013807788491249084} ``` # Or, just simply use [our package (GitHub)](https://github.com/aniemore/Aniemore), that can do whatever you want (or maybe not) 🤗 # Citations ``` @misc{Aniemore, author = {Артем Аментес, Илья Лубенец, Никита Давидчук}, title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека}, year = {2022}, publisher = {Hugging Face}, journal = {Hugging Face Hub}, howpublished = {\url{https://chatgptweb.us.kgm/aniemore/Aniemore}}, email = {hello@socialcode.ru} } ```