toiletsandpaper commited on
Commit
3a5a5c0
·
1 Parent(s): 1611116
Files changed (1) hide show
  1. README.md +59 -1
README.md CHANGED
@@ -17,4 +17,62 @@ widget:
17
  - text: "Сейчас ровно час дня"
18
  - text: "А ты уверен, что эти полоски снизу не врут? Точно уверен? Вот прям 100 процентов?"
19
 
20
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  - text: "Сейчас ровно час дня"
18
  - text: "А ты уверен, что эти полоски снизу не врут? Точно уверен? Вот прям 100 процентов?"
19
 
20
+ ---
21
+
22
+ # First - you should prepare few functions to talk to model
23
+
24
+ ```python
25
+ import torch
26
+ from transformers import BertForSequenceClassification, AutoTokenizer
27
+
28
+ LABELS = ['neutral', 'happiness', 'sadness', 'enthusiasm', 'fear', 'anger', 'disgust']
29
+ tokenizer = AutoTokenizer.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection')
30
+ model = BertForSequenceClassification.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection')
31
+
32
+ @torch.no_grad()
33
+ def predict_emotion(text: str) -> str:
34
+ """
35
+ We take the input text, tokenize it, pass it through the model, and then return the predicted label
36
+ :param text: The text to be classified
37
+ :type text: str
38
+ :return: The predicted emotion
39
+ """
40
+ inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
41
+ outputs = model(**inputs)
42
+ predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
43
+ predicted = torch.argmax(predicted, dim=1).numpy()
44
+
45
+ return LABELS[predicted[0]]
46
+
47
+ @torch.no_grad()
48
+ def predict_emotions(text: str) -> list:
49
+ """
50
+ It takes a string of text, tokenizes it, feeds it to the model, and returns a dictionary of emotions and their
51
+ probabilities
52
+ :param text: The text you want to classify
53
+ :type text: str
54
+ :return: A dictionary of emotions and their probabilities.
55
+ """
56
+ inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
57
+ outputs = model(**inputs)
58
+ predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
59
+ emotions_list = {}
60
+ for i in range(len(predicted.numpy()[0].tolist())):
61
+ emotions_list[LABELS[i]] = predicted.numpy()[0].tolist()[i]
62
+ return emotions_list
63
+ ```
64
+
65
+ # And then - just gently ask a model to predict your emotion
66
+
67
+ ```python
68
+ simple_prediction = predict_emotion("Какой же сегодня прекрасный день, братья")
69
+ not_simple_prediction = predict_emotions("Какой же сегодня прекрасный день, братья")
70
+
71
+ print(simple_prediction)
72
+ print(not_simple_prediction)
73
+ # happiness
74
+ # {'neutral': 0.0004941817605867982, 'happiness': 0.9979524612426758, 'sadness': 0.0002536600804887712, 'enthusiasm': 0.0005498139653354883, 'fear': 0.00025326196919195354, 'anger': 0.0003583927755244076, 'disgust': 0.00013807788491249084}
75
+ ```
76
+
77
+ # Or, just simply use [our package (GitHub)](https://github.com/aniemore/Aniemore), that can do whatever you want (or maybe not)
78
+ 🤗