Andrewwwwww
commited on
Update handler.py
Browse files- handler.py +8 -30
handler.py
CHANGED
@@ -1,22 +1,12 @@
|
|
1 |
-
# Code to inference Hermes with HF Transformers
|
2 |
-
# Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
|
3 |
|
4 |
-
import
|
5 |
-
|
6 |
-
from transformers import LlamaTokenizer, MixtralForCausalLM
|
7 |
-
#import bitsandbytes, flash_attn
|
8 |
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
-
self.tokenizer =
|
12 |
-
self.model =
|
13 |
-
|
14 |
-
torch_dtype=torch.float16,
|
15 |
-
device_map="auto",
|
16 |
-
load_in_8bit=False,
|
17 |
-
load_in_4bit=True,
|
18 |
-
#use_flash_attention_2=True
|
19 |
-
)
|
20 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
21 |
sys_prompt=data["prompt"]
|
22 |
list=data["inputs"]
|
@@ -32,20 +22,8 @@ class EndpointHandler:
|
|
32 |
|
33 |
#for chat in prompts:
|
34 |
#print(chat)
|
|
|
|
|
|
|
35 |
|
36 |
-
encodeds = self.tokenizer.encode(prompt, return_tensors="pt")
|
37 |
-
model_inputs = encodeds.to(device)
|
38 |
-
self.model.to(device)
|
39 |
-
generated_ids = self.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
40 |
-
decoded = self.tokenizer.decode(generated_ids[0])
|
41 |
-
return decoded
|
42 |
-
|
43 |
-
"""
|
44 |
-
encodeds = self.tokenizer.encode(prompt, return_tensors="pt")
|
45 |
-
model_inputs = encodeds.to(device)
|
46 |
-
self.model.to(device)
|
47 |
-
generated_ids = self.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
48 |
-
decoded = self.tokenizer.decode(generated_ids[0])
|
49 |
-
return decoded
|
50 |
-
"""
|
51 |
|
|
|
|
|
|
|
1 |
|
2 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
|
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
+
self.tokenizer =AutoTokenizer.from_pretrained(path)
|
8 |
+
self.model = AutoModelForCausalLM.from_pretrained(path, device_map='auto')
|
9 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
11 |
sys_prompt=data["prompt"]
|
12 |
list=data["inputs"]
|
|
|
22 |
|
23 |
#for chat in prompts:
|
24 |
#print(chat)
|
25 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
26 |
+
outputs = self.model.generate(**inputs, max_new_tokens=20)
|
27 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|