--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 20.16 - name: Test CER type: cer value: 5.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 39.79 - name: Test CER type: cer value: 15.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 47.95 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1768 - Wer: 0.2016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.7531 | 0.04 | 500 | 5.4564 | 1.0 | | 2.9882 | 0.08 | 1000 | 3.0041 | 1.0 | | 2.1953 | 0.13 | 1500 | 1.1723 | 0.7121 | | 1.2406 | 0.17 | 2000 | 0.3656 | 0.3623 | | 1.1294 | 0.21 | 2500 | 0.2843 | 0.2926 | | 1.0731 | 0.25 | 3000 | 0.2554 | 0.2664 | | 1.051 | 0.3 | 3500 | 0.2387 | 0.2535 | | 1.0479 | 0.34 | 4000 | 0.2345 | 0.2512 | | 1.0026 | 0.38 | 4500 | 0.2270 | 0.2452 | | 0.9921 | 0.42 | 5000 | 0.2212 | 0.2353 | | 0.9839 | 0.47 | 5500 | 0.2141 | 0.2330 | | 0.9907 | 0.51 | 6000 | 0.2122 | 0.2334 | | 0.9788 | 0.55 | 6500 | 0.2114 | 0.2270 | | 0.9687 | 0.59 | 7000 | 0.2066 | 0.2323 | | 0.9777 | 0.64 | 7500 | 0.2033 | 0.2237 | | 0.9476 | 0.68 | 8000 | 0.2020 | 0.2194 | | 0.9625 | 0.72 | 8500 | 0.1977 | 0.2191 | | 0.9497 | 0.76 | 9000 | 0.1976 | 0.2175 | | 0.9781 | 0.81 | 9500 | 0.1956 | 0.2159 | | 0.9552 | 0.85 | 10000 | 0.1958 | 0.2191 | | 0.9345 | 0.89 | 10500 | 0.1964 | 0.2158 | | 0.9528 | 0.93 | 11000 | 0.1926 | 0.2154 | | 0.9502 | 0.98 | 11500 | 0.1953 | 0.2149 | | 0.9358 | 1.02 | 12000 | 0.1927 | 0.2167 | | 0.941 | 1.06 | 12500 | 0.1901 | 0.2115 | | 0.9287 | 1.1 | 13000 | 0.1936 | 0.2090 | | 0.9491 | 1.15 | 13500 | 0.1900 | 0.2104 | | 0.9478 | 1.19 | 14000 | 0.1931 | 0.2120 | | 0.946 | 1.23 | 14500 | 0.1914 | 0.2134 | | 0.9499 | 1.27 | 15000 | 0.1931 | 0.2173 | | 0.9346 | 1.32 | 15500 | 0.1913 | 0.2105 | | 0.9509 | 1.36 | 16000 | 0.1902 | 0.2137 | | 0.9294 | 1.4 | 16500 | 0.1895 | 0.2086 | | 0.9418 | 1.44 | 17000 | 0.1913 | 0.2183 | | 0.9302 | 1.49 | 17500 | 0.1884 | 0.2114 | | 0.9418 | 1.53 | 18000 | 0.1894 | 0.2108 | | 0.9363 | 1.57 | 18500 | 0.1886 | 0.2132 | | 0.9338 | 1.61 | 19000 | 0.1856 | 0.2078 | | 0.9185 | 1.66 | 19500 | 0.1852 | 0.2056 | | 0.9216 | 1.7 | 20000 | 0.1874 | 0.2095 | | 0.9176 | 1.74 | 20500 | 0.1873 | 0.2078 | | 0.9288 | 1.78 | 21000 | 0.1865 | 0.2097 | | 0.9278 | 1.83 | 21500 | 0.1869 | 0.2100 | | 0.9295 | 1.87 | 22000 | 0.1878 | 0.2095 | | 0.9221 | 1.91 | 22500 | 0.1852 | 0.2121 | | 0.924 | 1.95 | 23000 | 0.1855 | 0.2042 | | 0.9104 | 2.0 | 23500 | 0.1858 | 0.2105 | | 0.9284 | 2.04 | 24000 | 0.1850 | 0.2080 | | 0.9162 | 2.08 | 24500 | 0.1839 | 0.2045 | | 0.9111 | 2.12 | 25000 | 0.1838 | 0.2080 | | 0.91 | 2.17 | 25500 | 0.1889 | 0.2106 | | 0.9152 | 2.21 | 26000 | 0.1856 | 0.2026 | | 0.9209 | 2.25 | 26500 | 0.1891 | 0.2133 | | 0.9094 | 2.29 | 27000 | 0.1857 | 0.2089 | | 0.9065 | 2.34 | 27500 | 0.1840 | 0.2052 | | 0.9156 | 2.38 | 28000 | 0.1833 | 0.2062 | | 0.8986 | 2.42 | 28500 | 0.1789 | 0.2001 | | 0.9045 | 2.46 | 29000 | 0.1769 | 0.2022 | | 0.9039 | 2.51 | 29500 | 0.1819 | 0.2073 | | 0.9145 | 2.55 | 30000 | 0.1828 | 0.2063 | | 0.9081 | 2.59 | 30500 | 0.1811 | 0.2049 | | 0.9252 | 2.63 | 31000 | 0.1833 | 0.2086 | | 0.8957 | 2.68 | 31500 | 0.1795 | 0.2083 | | 0.891 | 2.72 | 32000 | 0.1809 | 0.2058 | | 0.9023 | 2.76 | 32500 | 0.1812 | 0.2061 | | 0.8918 | 2.8 | 33000 | 0.1775 | 0.1997 | | 0.8852 | 2.85 | 33500 | 0.1790 | 0.1997 | | 0.8928 | 2.89 | 34000 | 0.1767 | 0.2013 | | 0.9079 | 2.93 | 34500 | 0.1735 | 0.1986 | | 0.9032 | 2.97 | 35000 | 0.1793 | 0.2024 | | 0.9018 | 3.02 | 35500 | 0.1778 | 0.2027 | | 0.8846 | 3.06 | 36000 | 0.1776 | 0.2046 | | 0.8848 | 3.1 | 36500 | 0.1812 | 0.2064 | | 0.9062 | 3.14 | 37000 | 0.1800 | 0.2018 | | 0.9011 | 3.19 | 37500 | 0.1783 | 0.2049 | | 0.8996 | 3.23 | 38000 | 0.1810 | 0.2036 | | 0.893 | 3.27 | 38500 | 0.1805 | 0.2056 | | 0.897 | 3.31 | 39000 | 0.1773 | 0.2035 | | 0.8992 | 3.36 | 39500 | 0.1804 | 0.2054 | | 0.8987 | 3.4 | 40000 | 0.1768 | 0.2016 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset mozilla-foundation/common_voice_7_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```