Ammar-alhaj-ali
commited on
Commit
·
191b56a
1
Parent(s):
ea3583c
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- nielsr/funsd-layoutlmv3
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-funsd
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: nielsr/funsd-layoutlmv3
|
19 |
+
type: nielsr/funsd-layoutlmv3
|
20 |
+
args: funsd
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.9026198714780029
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.913
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9077802634849614
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.8330271015158475
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# layoutlmv3-finetuned-funsd
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 1.1164
|
44 |
+
- Precision: 0.9026
|
45 |
+
- Recall: 0.913
|
46 |
+
- F1: 0.9078
|
47 |
+
- Accuracy: 0.8330
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-05
|
67 |
+
- train_batch_size: 16
|
68 |
+
- eval_batch_size: 16
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 1000
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
Step|Training Loss |Validation Loss| Precision| Recal|l F1| Accuracy
|
77 |
+
|:-------------:||:-------------:||:-------------:||:-------------:||:-------------:|
|
78 |
+
250|No log| 0.435449 | 0.854588| 0.902136| 0.877719 |0.835968
|
79 |
+
500|0.505800| 0.611310| 0.869822| 0.876304| 0.873051| 0.839177
|
80 |
+
750| 0.505800| 0.635022| 0.879886| 0.917039| 0.898078| 0.853085
|
81 |
+
1000| 0.097000| 0.765935| 0.900818| 0.929459| 0.914914| 0.860097
|
82 |
+
1250| 0.097000| 0.887739| 0.885533| 0.903130| 0.894245| 0.842625
|
83 |
+
1500| 0.029900| 0.948754| 0.898018| 0.923000| 0.910338| 0.843575
|
84 |
+
1750| 0.029900| 1.102811| 0.900433| 0.929955| 0.914956| 0.840128
|
85 |
+
2000| 0.009700| 1.039040| 0.901415| 0.917536| 0.909404| 0.852728
|
86 |
+
2250| 0.009700| 1.044235| 0.904716| 0.924491| 0.914496| 0.849519
|
87 |
+
2500| 0.002500| 1.013194| 0.913086| 0.918530| 0.915800| 0.849637
|
88 |
+
2750| 0.002500| 1.017520| 0.908605| 0.928465| 0.918428| 0.854986
|
89 |
+
3000| 0.000900| 1.029559| 0.914216| 0.926478| 0.920306| 0.859384
|
90 |
+
3250| 0.000900| 1.038318| 0.918177| 0.930949| 0.924519| 0.859979
|
91 |
+
3500| 0.000800| 1.045578| 0.914216| 0.926478| 0.920306| 0.858552
|
92 |
+
3750| 0.000800| 1.040568| 0.913894| 0.927968| 0.920877| 0.858433
|
93 |
+
4000| 0.000700| 1.041146| 0.913894| 0.927968| 0.920877| 0.858552
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.19.0.dev0
|
99 |
+
- Pytorch 1.11.0+cu113
|
100 |
+
- Datasets 2.0.0
|
101 |
+
- Tokenizers 0.11.6
|