Ammar-alhaj-ali commited on
Commit
191b56a
·
1 Parent(s): ea3583c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - nielsr/funsd-layoutlmv3
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-funsd
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: nielsr/funsd-layoutlmv3
19
+ type: nielsr/funsd-layoutlmv3
20
+ args: funsd
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.9026198714780029
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.913
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9077802634849614
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.8330271015158475
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # layoutlmv3-finetuned-funsd
40
+
41
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 1.1164
44
+ - Precision: 0.9026
45
+ - Recall: 0.913
46
+ - F1: 0.9078
47
+ - Accuracy: 0.8330
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 1e-05
67
+ - train_batch_size: 16
68
+ - eval_batch_size: 16
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - training_steps: 1000
73
+
74
+ ### Training results
75
+
76
+ Step|Training Loss |Validation Loss| Precision| Recal|l F1| Accuracy
77
+ |:-------------:||:-------------:||:-------------:||:-------------:||:-------------:|
78
+ 250|No log| 0.435449 | 0.854588| 0.902136| 0.877719 |0.835968
79
+ 500|0.505800| 0.611310| 0.869822| 0.876304| 0.873051| 0.839177
80
+ 750| 0.505800| 0.635022| 0.879886| 0.917039| 0.898078| 0.853085
81
+ 1000| 0.097000| 0.765935| 0.900818| 0.929459| 0.914914| 0.860097
82
+ 1250| 0.097000| 0.887739| 0.885533| 0.903130| 0.894245| 0.842625
83
+ 1500| 0.029900| 0.948754| 0.898018| 0.923000| 0.910338| 0.843575
84
+ 1750| 0.029900| 1.102811| 0.900433| 0.929955| 0.914956| 0.840128
85
+ 2000| 0.009700| 1.039040| 0.901415| 0.917536| 0.909404| 0.852728
86
+ 2250| 0.009700| 1.044235| 0.904716| 0.924491| 0.914496| 0.849519
87
+ 2500| 0.002500| 1.013194| 0.913086| 0.918530| 0.915800| 0.849637
88
+ 2750| 0.002500| 1.017520| 0.908605| 0.928465| 0.918428| 0.854986
89
+ 3000| 0.000900| 1.029559| 0.914216| 0.926478| 0.920306| 0.859384
90
+ 3250| 0.000900| 1.038318| 0.918177| 0.930949| 0.924519| 0.859979
91
+ 3500| 0.000800| 1.045578| 0.914216| 0.926478| 0.920306| 0.858552
92
+ 3750| 0.000800| 1.040568| 0.913894| 0.927968| 0.920877| 0.858433
93
+ 4000| 0.000700| 1.041146| 0.913894| 0.927968| 0.920877| 0.858552
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.19.0.dev0
99
+ - Pytorch 1.11.0+cu113
100
+ - Datasets 2.0.0
101
+ - Tokenizers 0.11.6