import os import wandb import numpy as np import pickle import torch import torch.nn as nn from sklearn.metrics import accuracy_score, precision_recall_fscore_support, roc_auc_score, matthews_corrcoef from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, Trainer from datasets import Dataset from accelerate import Accelerator from peft import PeftModel # Helper functions and data preparation def truncate_labels(labels, max_length): """Truncate labels to the specified max_length.""" return [label[:max_length] for label in labels] def compute_metrics(p): """Compute metrics for evaluation.""" predictions, labels = p predictions = np.argmax(predictions, axis=2) # Remove padding (-100 labels) predictions = predictions[labels != -100].flatten() labels = labels[labels != -100].flatten() # Compute accuracy accuracy = accuracy_score(labels, predictions) # Compute precision, recall, F1 score, and AUC precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary') auc = roc_auc_score(labels, predictions) # Compute MCC mcc = matthews_corrcoef(labels, predictions) return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc, 'mcc': mcc} class WeightedTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): """Custom compute_loss function.""" outputs = model(**inputs) loss_fct = nn.CrossEntropyLoss() active_loss = inputs["attention_mask"].view(-1) == 1 active_logits = outputs.logits.view(-1, model.config.num_labels) active_labels = torch.where( active_loss, inputs["labels"].view(-1), torch.tensor(loss_fct.ignore_index).type_as(inputs["labels"]) ) loss = loss_fct(active_logits, active_labels) return (loss, outputs) if return_outputs else loss if __name__ == "__main__": # Environment setup accelerator = Accelerator() wandb.init(project='binding_site_prediction') # Load data and labels with open("600K_data/train_sequences_chunked_by_family.pkl", "rb") as f: train_sequences = pickle.load(f) with open("600K_data/test_sequences_chunked_by_family.pkl", "rb") as f: test_sequences = pickle.load(f) with open("600K_data/train_labels_chunked_by_family.pkl", "rb") as f: train_labels = pickle.load(f) with open("600K_data/test_labels_chunked_by_family.pkl", "rb") as f: test_labels = pickle.load(f) # Tokenization and dataset creation tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D") max_sequence_length = tokenizer.model_max_length train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False) test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False) train_labels = truncate_labels(train_labels, max_sequence_length) test_labels = truncate_labels(test_labels, max_sequence_length) train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column("labels", train_labels) test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column("labels", test_labels) # Load the pre-trained LoRA model base_model_path = "facebook/esm2_t12_35M_UR50D" lora_model_path = "esm2_t12_35M_lora_binding_sites_2023-09-21_17-50-58/checkpoint-84029" # Replace with the correct path to your LoRA model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) model = PeftModel.from_pretrained(base_model, lora_model_path) model = accelerator.prepare(model) # Define a function to compute metrics and get the train/test metrics data_collator = DataCollatorForTokenClassification(tokenizer) trainer = Trainer(model=model, data_collator=data_collator, compute_metrics=compute_metrics) train_metrics = trainer.evaluate(train_dataset) test_metrics = trainer.evaluate(test_dataset) # Print the metrics print(f"Train metrics: {train_metrics}") print(f"Test metrics: {test_metrics}") # Log metrics to W&B wandb.log({"Train metrics": train_metrics, "Test metrics": test_metrics})