File size: 9,777 Bytes
ff2d02b bfb5168 ff2d02b b648b64 9acc110 d56fafb 0b4cbc4 0612706 7cf9c57 4208750 0612706 b648b64 210a373 b648b64 40d957d b648b64 101ed72 cf09ded 101ed72 cf09ded 101ed72 cf09ded 101ed72 cf09ded 3db1969 d9babe5 3db1969 ff2d02b 95d7464 b648b64 dc4b7ac ff2d02b b648b64 65808d9 b648b64 ff2d02b b648b64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
library_name: peft
license: mit
datasets:
- AmelieSchreiber/binding_sites_random_split_by_family_550K
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
- roc_auc
- matthews_correlation
pipeline_tag: token-classification
tags:
- ESM-2
- biology
- protein language model
- binding sites
---
# ESM-2 for Binding Site Prediction
**This model is overfit (see below).**
This model *may be* close to SOTA compared to [these SOTA structural models](https://www.biorxiv.org/content/10.1101/2023.08.11.553028v1).
Note the especially high recall below.
One of the primary goals in training this model is to prove the viability of using simple, single sequence only protein language models
for binary token classification tasks like predicting binding and active sites of protein sequences based on sequence alone. This project
is also an attempt to make deep learning techniques like LoRA more accessible and to showcase the competative or even superior performance
of simple models and techniques. Moreover, since most proteins still do not have a predicted 3D fold or backbone structure, it is useful to
have a model that can predict binding residues from sequence alone. We also hope that this project will be helpful in this regard.
It has been shown that pLMs like ESM-2 contain structural information in the attention maps that recapitulate the contact maps of proteins,
and that single sequence masked language models like ESMFold can be used in atomically accurate predictions of folds, even outperforming
AlphaFold2. In our approach we show a positive correlation between scaling the model size and data
in a 1-to-1 fashion provides competative and possibly even SOTA performance, although our comparison to the SOTA models is not as fair and
comprehensive as it could be (see [this report for more details](https://api.wandb.ai/links/amelie-schreiber-math/0asqd3hs)).
This model is a finetuned version of the 35M parameter `esm2_t12_35M_UR50D` ([see here](https://huggingface.co/facebook/esm2_t12_35M_UR50D)
and [here](https://huggingface.co/docs/transformers/model_doc/esm) for more details). The model was finetuned with LoRA for
the binay token classification task of predicting binding sites (and active sites) of protein sequences based on sequence alone.
The model may need more training, however it still achieves better performance on the test set in terms of loss, accuracy,
precision, recall, F1 score, ROC_AUC, and Matthews Correlation Coefficient (MCC) compared to the models trained on the smaller
dataset [found here](https://huggingface.co/datasets/AmelieSchreiber/binding_sites_random_split_by_family) of ~209K protein sequences. Note,
this model has a high recall, meaning it is likely to detect binding sites, but it has a precision score that is somewhat lower than the SOTA
structural models mentioned above, meaning the model may return some false positives as well.
## Overfitting Issues
```python
Train: ({'accuracy': 0.9908574638195745,
'precision': 0.7748830511095647,
'recall': 0.9862043939282111,
'f1': 0.8678649909611492,
'auc': 0.9886039823329382,
'mcc': 0.8699396085712834},
Test: {'accuracy': 0.9486280975482552,
'precision': 0.40980984516603186,
'recall': 0.827004864790918,
'f1': 0.5480444772577421,
'auc': 0.890196425388581,
'mcc': 0.560633448203768})
```
Let's analyze the train and test metrics one by one:
### **1. Accuracy**
- **Train**: 99.09%
- **Test**: 94.86%
The accuracy is notably high in both training and test datasets, indicating that the model makes correct predictions a significant majority of the time. The high accuracy on the test dataset signifies good generalization capabilities.
### **2. Precision**
- **Train**: 77.49%
- **Test**: 41.00%
While the precision is quite good in the training dataset, it sees a decrease in the test dataset. This suggests that a substantial proportion of the instances that the model predicts as positive are actually negative, which could potentially lead to a higher false-positive rate.
### **3. Recall**
- **Train**: 98.62%
- **Test**: 82.70%
The recall is impressive in both the training and test datasets, indicating that the model is able to identify a large proportion of actual positive instances correctly. A high recall in the test dataset suggests that the model maintains its sensitivity in identifying positive cases when generalized to unseen data.
### **4. F1-Score**
- **Train**: 86.79%
- **Test**: 54.80%
The F1-score, which is the harmonic mean of precision and recall, is good in the training dataset but sees a decrease in the test dataset. The decrease in the F1-score from training to testing suggests a worsened balance between precision and recall in the unseen data, largely due to a decrease in precision.
### **5. AUC (Area Under the ROC Curve)**
- **Train**: 98.86%
- **Test**: 89.02%
The AUC is quite high in both the training and test datasets, indicating that the model has a good capability to distinguish between the positive and negative classes. A high AUC in the test dataset further suggests that the model generalizes well to unseen data.
### **6. MCC (Matthews Correlation Coefficient)**
- **Train**: 86.99%
- **Test**: 56.06%
The MCC, a balanced metric which takes into account true and false positives and negatives, is good in the training set but decreases in the test set. This suggests a diminished quality of binary classifications on the test dataset compared to the training dataset.
### **Overall Analysis**
- **Generalization**: The metrics reveal that the model has a good generalization capability, as indicated by the high accuracy, recall, and AUC on the test dataset.
- **Precision-Recall Trade-off**: The model maintains a high recall but experiences a dip in precision in the test dataset, leading to a lower F1-score. It indicates a tendency to predict more false positives, which might require tuning to balance precision and recall optimally.
- **Improvement Suggestions**:
- **Precision Improvement**: Focus on strategies to improve precision, such as feature engineering or experimenting with different classification thresholds.
- **Hyperparameter Tuning**: Engaging in hyperparameter tuning might assist in enhancing the model's performance on unseen data.
- **Complexity Reduction**: Consider reducing the model's complexity to prevent potential overfitting and improve generalization.
- **Class Imbalance**: If the dataset has a class imbalance, techniques such as resampling or utilizing class weights might be beneficial.
In conclusion, the model performs well on the training dataset and maintains a reasonably good performance on the test dataset, demonstrating a solid generalization capability. However, the decrease in certain metrics like precision and F1-score in the test dataset compared to the training dataset indicates room for improvement to optimize the model further for unseen data. It would be advantageous to enhance precision without significantly compromising recall to achieve a more harmonious balance between the two.
## Running Inference
You can download and run [this notebook](https://huggingface.co/AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp3/blob/main/testing_and_inference.ipynb)
to test out any of the ESMB models. Be sure to download the datasets linked to in the notebook.
Note, if you would like to run the models on the train/test split to get the metrics, you may need to do
locally or in a Colab Pro instance as the datasets are quite large and will not run in a standard Colab
(you can still run inference on your own protein sequences though).
## Training procedure
This model was finetuned with LoRA on ~549K protein sequences from the UniProt database. The dataset can be found
[here](https://huggingface.co/datasets/AmelieSchreiber/binding_sites_random_split_by_family_550K). The model obtains
the following test metrics:
```python
Epoch: 3
Training Loss: 0.029100
Validation Loss: 0.291670
Accuracy: 0.948626
Precision: 0.409795
Recall: 0.826979
F1: 0.548025
Auc: 0.890183
Mcc: 0.560612
```
### Framework versions
- PEFT 0.5.0
## Using the model
To use the model on one of your protein sequences try running the following:
```python
!pip install transformers -q
!pip install peft -q
```
```python
from transformers import AutoModelForTokenClassification, AutoTokenizer
from peft import PeftModel
import torch
# Path to the saved LoRA model
model_path = "AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp3"
# ESM2 base model
base_model_path = "facebook/esm2_t12_35M_UR50D"
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Load the tokenizer
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
# Tokenize the sequence
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
# Define labels
id2label = {
0: "No binding site",
1: "Binding site"
}
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))
``` |