File size: 5,669 Bytes
31be7d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- wildreceipt
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-wildreceipt
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wildreceipt
type: wildreceipt
config: WildReceipt
split: train
args: WildReceipt
metrics:
- name: Precision
type: precision
value: 0.877962408063198
- name: Recall
type: recall
value: 0.8870235310306867
- name: F1
type: f1
value: 0.8824697104524608
- name: Accuracy
type: accuracy
value: 0.9265109136777449
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-wildreceipt
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3129
- Precision: 0.8780
- Recall: 0.8870
- F1: 0.8825
- Accuracy: 0.9265
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.32 | 100 | 1.2240 | 0.6077 | 0.3766 | 0.4650 | 0.7011 |
| No log | 0.63 | 200 | 0.8417 | 0.6440 | 0.5089 | 0.5685 | 0.7743 |
| No log | 0.95 | 300 | 0.6466 | 0.7243 | 0.6583 | 0.6897 | 0.8311 |
| No log | 1.26 | 400 | 0.5516 | 0.7533 | 0.7158 | 0.7341 | 0.8537 |
| 0.9961 | 1.58 | 500 | 0.4845 | 0.7835 | 0.7557 | 0.7693 | 0.8699 |
| 0.9961 | 1.89 | 600 | 0.4506 | 0.7809 | 0.7930 | 0.7869 | 0.8770 |
| 0.9961 | 2.21 | 700 | 0.4230 | 0.8101 | 0.8107 | 0.8104 | 0.8886 |
| 0.9961 | 2.52 | 800 | 0.3797 | 0.8211 | 0.8296 | 0.8253 | 0.8983 |
| 0.9961 | 2.84 | 900 | 0.3576 | 0.8289 | 0.8411 | 0.8349 | 0.9016 |
| 0.4076 | 3.15 | 1000 | 0.3430 | 0.8394 | 0.8371 | 0.8382 | 0.9055 |
| 0.4076 | 3.47 | 1100 | 0.3354 | 0.8531 | 0.8405 | 0.8467 | 0.9071 |
| 0.4076 | 3.79 | 1200 | 0.3331 | 0.8371 | 0.8504 | 0.8437 | 0.9076 |
| 0.4076 | 4.1 | 1300 | 0.3184 | 0.8445 | 0.8609 | 0.8526 | 0.9118 |
| 0.4076 | 4.42 | 1400 | 0.3087 | 0.8617 | 0.8580 | 0.8598 | 0.9150 |
| 0.2673 | 4.73 | 1500 | 0.3013 | 0.8613 | 0.8657 | 0.8635 | 0.9177 |
| 0.2673 | 5.05 | 1600 | 0.2971 | 0.8630 | 0.8689 | 0.8659 | 0.9181 |
| 0.2673 | 5.36 | 1700 | 0.3075 | 0.8675 | 0.8639 | 0.8657 | 0.9177 |
| 0.2673 | 5.68 | 1800 | 0.2989 | 0.8551 | 0.8764 | 0.8656 | 0.9193 |
| 0.2673 | 5.99 | 1900 | 0.3011 | 0.8572 | 0.8762 | 0.8666 | 0.9194 |
| 0.2026 | 6.31 | 2000 | 0.3107 | 0.8595 | 0.8722 | 0.8658 | 0.9181 |
| 0.2026 | 6.62 | 2100 | 0.3050 | 0.8678 | 0.8800 | 0.8739 | 0.9220 |
| 0.2026 | 6.94 | 2200 | 0.2971 | 0.8722 | 0.8789 | 0.8755 | 0.9237 |
| 0.2026 | 7.26 | 2300 | 0.3057 | 0.8666 | 0.8785 | 0.8725 | 0.9209 |
| 0.2026 | 7.57 | 2400 | 0.3172 | 0.8593 | 0.8773 | 0.8682 | 0.9184 |
| 0.1647 | 7.89 | 2500 | 0.3018 | 0.8695 | 0.8823 | 0.8759 | 0.9228 |
| 0.1647 | 8.2 | 2600 | 0.3001 | 0.8760 | 0.8795 | 0.8777 | 0.9256 |
| 0.1647 | 8.52 | 2700 | 0.3068 | 0.8758 | 0.8745 | 0.8752 | 0.9235 |
| 0.1647 | 8.83 | 2800 | 0.3007 | 0.8779 | 0.8779 | 0.8779 | 0.9248 |
| 0.1647 | 9.15 | 2900 | 0.3063 | 0.8740 | 0.8763 | 0.8751 | 0.9228 |
| 0.1342 | 9.46 | 3000 | 0.3096 | 0.8675 | 0.8834 | 0.8754 | 0.9235 |
| 0.1342 | 9.78 | 3100 | 0.3052 | 0.8736 | 0.8848 | 0.8792 | 0.9249 |
| 0.1342 | 10.09 | 3200 | 0.3120 | 0.8727 | 0.8885 | 0.8805 | 0.9252 |
| 0.1342 | 10.41 | 3300 | 0.3146 | 0.8718 | 0.8843 | 0.8780 | 0.9243 |
| 0.1342 | 10.73 | 3400 | 0.3124 | 0.8720 | 0.8880 | 0.8799 | 0.9253 |
| 0.117 | 11.04 | 3500 | 0.3088 | 0.8761 | 0.8817 | 0.8789 | 0.9252 |
| 0.117 | 11.36 | 3600 | 0.3082 | 0.8782 | 0.8834 | 0.8808 | 0.9257 |
| 0.117 | 11.67 | 3700 | 0.3129 | 0.8767 | 0.8847 | 0.8807 | 0.9256 |
| 0.117 | 11.99 | 3800 | 0.3116 | 0.8792 | 0.8847 | 0.8820 | 0.9265 |
| 0.117 | 12.3 | 3900 | 0.3142 | 0.8768 | 0.8874 | 0.8821 | 0.9261 |
| 0.1022 | 12.62 | 4000 | 0.3129 | 0.8780 | 0.8870 | 0.8825 | 0.9265 |
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|