AliMaatouk commited on
Commit
539e8e7
·
verified ·
1 Parent(s): 90dda34

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -3
README.md CHANGED
@@ -1,3 +1,88 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - nlp
8
+ ---
9
+
10
+ # Phi-1.5-Tele Model Card
11
+
12
+ ## Model Summary
13
+
14
+ The language model Phi-1.5-Tele is a Transformer with **1.3 billion** parameters, specialized in telecommunications. It is based on Microsoft [phi-1.5](https://huggingface.co/microsoft/phi-1_5) and was continutally pretrained on [Tele-Data](https://huggingface.co/datasets/AliMaatouk/Tele-Data), a large-scale dataset of approximately 2.5 billion tokens of telecommunications material, including articles, standards, and general web content related to the telecommunications domain.
15
+
16
+ When assessed against telecommunications benchmarks such as [Tele-Eval](https://huggingface.co/datasets/AliMaatouk/Tele-Eval), Phi-1.5-Tele outperforms [phi-1.5](https://huggingface.co/microsoft/phi-1_5) by several percentage points. Additionally, Phi-1.5-Tele matches [phi-1.5](https://huggingface.co/microsoft/phi-1_5) across benchmarks related to common sense, language understanding, and logical reasoning. Thus, this adaptation was achieved with minimal compromise in performance on the original version.
17
+
18
+ ### Context Length
19
+
20
+ The model was trained on a context length of 2048 tokens.
21
+
22
+ ## Usage
23
+
24
+ Phi-1.5-Tele is a base model best suited for fine-tuning on applications related to telecommunications. Although it has not been specifically fine-tuned to follow instructions, it can be prompted to answer questions and follow instructions using the following format:
25
+
26
+ ```markdown
27
+ Write me a poem about telecommunications.
28
+
29
+ Answer: This world so vast and wide, we send our thoughts fast,
30
+ With technology that allows us to be ever part of it.
31
+ We connect, we share, we unite,
32
+ Through the web of information, so vast and complete.
33
+ ```
34
+
35
+ where the model generates the text after "Answer:".
36
+
37
+ ## Sample Code
38
+
39
+ Below we share some code snippets on how to get quickly started with running the model. First, make sure to `pip install -U transformers`, then copy the snippet corresponding to your hardware and adapt it to your usecase.
40
+
41
+ #### Running the model on a CPU
42
+
43
+
44
+ ```python
45
+ from transformers import AutoTokenizer, AutoModelForCausalLM
46
+
47
+ model = AutoModelForCausalLM.from_pretrained("AliMaatouk/Phi-1.5-Tele", torch_dtype="auto")
48
+ tokenizer = AutoTokenizer.from_pretrained("AliMaatouk/Phi-1.5-Tele")
49
+
50
+ prompt = "Write me a poem about telecommunications.\nAnswer:"
51
+ input_ids = tokenizer(prompt, return_tensors="pt")
52
+ outputs = model.generate(**input_ids, max_new_tokens=100)
53
+
54
+ generated_tokens = outputs[0, len(input_ids['input_ids'][0]):]
55
+ response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
56
+ print(response)
57
+ ```
58
+
59
+ #### Running the model on a single / multi GPU
60
+
61
+ ```python
62
+ import torch
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
+
65
+ model = AutoModelForCausalLM.from_pretrained("AliMaatouk/Phi-1.5-Tele", torch_dtype="auto", device_map="auto")
66
+ tokenizer = AutoTokenizer.from_pretrained("AliMaatouk/Phi-1.5-Tele")
67
+
68
+ prompt = "Write me a poem about telecommunications.\nAnswer:"
69
+ input_ids = tokenizer(prompt, return_tensors="pt").to("cuda")
70
+ outputs = model.generate(**input_ids, max_new_tokens=100)
71
+
72
+ generated_tokens = outputs[0, len(input_ids['input_ids'][0]):]
73
+ response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
74
+ print(response)
75
+ ```
76
+
77
+ ## Citation
78
+
79
+ You can find the paper with all details about the model at https://arxiv.org/abs/2309.05463. Please cite it as follows:
80
+
81
+ ```bib
82
+ @article{textbooks2,
83
+ title={Textbooks Are All You Need II: \textbf{phi-1.5} technical report},
84
+ author={Li, Yuanzhi and Bubeck, S{\'e}bastien and Eldan, Ronen and Del Giorno, Allie and Gunasekar, Suriya and Lee, Yin Tat},
85
+ journal={arXiv preprint arXiv:2309.05463},
86
+ year={2023}
87
+ }
88
+ ```