--- base_model: Alfahluzi/bert2bert-model99-last tags: - generated_from_trainer datasets: - id_liputan6 model-index: - name: bert2bert-model99-last-Xtreme-Train results: [] --- # bert2bert-model99-last-Xtreme-Train This model is a fine-tuned version of [Alfahluzi/bert2bert-model99-last](https://huggingface.co/Alfahluzi/bert2bert-model99-last) on the id_liputan6 dataset. It achieves the following results on the evaluation set: - Loss: 2.8449 - R1 Precision: 0.3481 - R1 Recall: 0.3462 - R1 Fmeasure: 0.3448 - R2 Precision: 0.1475 - R2 Recall: 0.1463 - R2 Fmeasure: 0.1458 - Rl Precision: 0.2761 - Rl Recall: 0.2748 - Rl Fmeasure: 0.2736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:| | 2.5931 | 1.0 | 495 | 2.3625 | 0.359 | 0.3516 | 0.3528 | 0.159 | 0.155 | 0.1557 | 0.2876 | 0.2819 | 0.2826 | | 1.8329 | 2.0 | 990 | 2.4301 | 0.3577 | 0.3489 | 0.3508 | 0.1563 | 0.1517 | 0.1528 | 0.286 | 0.2793 | 0.2806 | | 1.3237 | 3.0 | 1485 | 2.6019 | 0.3483 | 0.3445 | 0.344 | 0.149 | 0.1468 | 0.1468 | 0.2784 | 0.2755 | 0.275 | | 0.976 | 4.0 | 1980 | 2.7468 | 0.3509 | 0.3481 | 0.3471 | 0.1501 | 0.1483 | 0.1481 | 0.2784 | 0.2765 | 0.2755 | | 0.7665 | 5.0 | 2475 | 2.8449 | 0.3481 | 0.3462 | 0.3448 | 0.1475 | 0.1463 | 0.1458 | 0.2761 | 0.2748 | 0.2736 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2