--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-pt results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 pt type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 19.361 - name: Test CER type: cer value: 5.533 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Validation WER type: wer value: 47.812 - name: Validation CER type: cer value: 18.805 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 19.36 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 48.01 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 49.21 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Wer: 0.2382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0952 | 0.64 | 500 | 3.0982 | 1.0 | | 1.7975 | 1.29 | 1000 | 0.7887 | 0.5651 | | 1.4138 | 1.93 | 1500 | 0.5238 | 0.4389 | | 1.344 | 2.57 | 2000 | 0.4775 | 0.4318 | | 1.2737 | 3.21 | 2500 | 0.4648 | 0.4075 | | 1.2554 | 3.86 | 3000 | 0.4069 | 0.3678 | | 1.1996 | 4.5 | 3500 | 0.3914 | 0.3668 | | 1.1427 | 5.14 | 4000 | 0.3694 | 0.3572 | | 1.1372 | 5.78 | 4500 | 0.3568 | 0.3501 | | 1.0831 | 6.43 | 5000 | 0.3331 | 0.3253 | | 1.1074 | 7.07 | 5500 | 0.3332 | 0.3352 | | 1.0536 | 7.71 | 6000 | 0.3131 | 0.3152 | | 1.0248 | 8.35 | 6500 | 0.3024 | 0.3023 | | 1.0075 | 9.0 | 7000 | 0.2948 | 0.3028 | | 0.979 | 9.64 | 7500 | 0.2796 | 0.2853 | | 0.9594 | 10.28 | 8000 | 0.2719 | 0.2789 | | 0.9172 | 10.93 | 8500 | 0.2620 | 0.2695 | | 0.9047 | 11.57 | 9000 | 0.2537 | 0.2596 | | 0.8777 | 12.21 | 9500 | 0.2438 | 0.2525 | | 0.8629 | 12.85 | 10000 | 0.2409 | 0.2493 | | 0.8575 | 13.5 | 10500 | 0.2366 | 0.2440 | | 0.8361 | 14.14 | 11000 | 0.2317 | 0.2385 | | 0.8126 | 14.78 | 11500 | 0.2290 | 0.2382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0