--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-fr results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 36.81 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 35.55 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 39.94 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.2388 - Wer: 0.3681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3748 | 0.07 | 500 | 3.8784 | 1.0 | | 2.8068 | 0.14 | 1000 | 2.8289 | 0.9826 | | 1.6698 | 0.22 | 1500 | 0.8811 | 0.7127 | | 1.3488 | 0.29 | 2000 | 0.5166 | 0.5369 | | 1.2239 | 0.36 | 2500 | 0.4105 | 0.4741 | | 1.1537 | 0.43 | 3000 | 0.3585 | 0.4448 | | 1.1184 | 0.51 | 3500 | 0.3336 | 0.4292 | | 1.0968 | 0.58 | 4000 | 0.3195 | 0.4180 | | 1.0737 | 0.65 | 4500 | 0.3075 | 0.4141 | | 1.0677 | 0.72 | 5000 | 0.3015 | 0.4089 | | 1.0462 | 0.8 | 5500 | 0.2971 | 0.4077 | | 1.0392 | 0.87 | 6000 | 0.2870 | 0.3997 | | 1.0178 | 0.94 | 6500 | 0.2805 | 0.3963 | | 0.992 | 1.01 | 7000 | 0.2748 | 0.3935 | | 1.0197 | 1.09 | 7500 | 0.2691 | 0.3884 | | 1.0056 | 1.16 | 8000 | 0.2682 | 0.3889 | | 0.9826 | 1.23 | 8500 | 0.2647 | 0.3868 | | 0.9815 | 1.3 | 9000 | 0.2603 | 0.3832 | | 0.9717 | 1.37 | 9500 | 0.2561 | 0.3807 | | 0.9605 | 1.45 | 10000 | 0.2523 | 0.3783 | | 0.96 | 1.52 | 10500 | 0.2494 | 0.3788 | | 0.9442 | 1.59 | 11000 | 0.2478 | 0.3760 | | 0.9564 | 1.66 | 11500 | 0.2454 | 0.3733 | | 0.9436 | 1.74 | 12000 | 0.2439 | 0.3747 | | 0.938 | 1.81 | 12500 | 0.2411 | 0.3716 | | 0.9353 | 1.88 | 13000 | 0.2397 | 0.3698 | | 0.9271 | 1.95 | 13500 | 0.2388 | 0.3681 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0