test_mllama_11B_v13 / configuration_llama3.py
alex-ht
first commit
b48cee7
raw
history blame
4.02 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mllama model configuration"""
import os
from typing import Dict, List, Optional, Union
import transformers
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
from transformers import Wav2Vec2BertConfig, AutoConfig, LlamaConfig
from transformers.models.mllama.configuration_mllama import MllamaVisionConfig, MllamaTextConfig
logger = logging.get_logger(__name__)
class Llama3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-9B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 128256):
The image token index to encode the image prompt.
Example:
```python
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = MllamaVisionConfig()
>>> # Initializing a Llama config
>>> text_config = MllamaTextConfig()
>>> # Initializing a mllama-11b style configuration
>>> configuration = MllamaConfig(vision_config, text_config)
>>> # Initializing a model from the mllama-11b style configuration
>>> model = MllamaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llama3"
is_composition = True
def __init__(
self,
text_config=None,
audio_config=None,
audio_token_index=128257,
**kwargs,
):
if audio_config is None:
self.audio_config = Wav2Vec2BertConfig()
logger.info("audio_config is None, using default mllama audio config")
elif isinstance(audio_config, dict):
self.audio_config = Wav2Vec2BertConfig(**audio_config)
elif isinstance(audio_config, Wav2Vec2BertConfig):
self.audio_config = audio_config
self.audio_token_index = audio_token_index
if text_config is None:
self.text_config = LlamaConfig()
logger.info("text_config is None, using default mllama text config")
elif isinstance(text_config, dict):
self.text_config = LlamaConfig(**text_config)
elif isinstance(text_config, LlamaConfig):
self.text_config = text_config
super().__init__(**kwargs)
AutoConfig.register("llama3", Llama3Config)
transformers.Llama3Config = Llama3Config