|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Mllama model configuration""" |
|
|
|
import os |
|
from typing import Dict, List, Optional, Union |
|
|
|
import transformers |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.modeling_rope_utils import rope_config_validation |
|
from transformers.utils import logging |
|
from transformers import Wav2Vec2BertConfig, AutoConfig, LlamaConfig |
|
from transformers.models.mllama.configuration_mllama import MllamaVisionConfig, MllamaTextConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Llama3Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an |
|
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mllama-9B. |
|
|
|
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`): |
|
The config object or dictionary of the vision backbone. |
|
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`): |
|
The config object or dictionary of the text backbone. |
|
image_token_index (`int`, *optional*, defaults to 128256): |
|
The image token index to encode the image prompt. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig |
|
|
|
>>> # Initializing a CLIP-vision config |
|
>>> vision_config = MllamaVisionConfig() |
|
|
|
>>> # Initializing a Llama config |
|
>>> text_config = MllamaTextConfig() |
|
|
|
>>> # Initializing a mllama-11b style configuration |
|
>>> configuration = MllamaConfig(vision_config, text_config) |
|
|
|
>>> # Initializing a model from the mllama-11b style configuration |
|
>>> model = MllamaForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "llama3" |
|
is_composition = True |
|
|
|
def __init__( |
|
self, |
|
text_config=None, |
|
audio_config=None, |
|
audio_token_index=128257, |
|
**kwargs, |
|
): |
|
if audio_config is None: |
|
self.audio_config = Wav2Vec2BertConfig() |
|
logger.info("audio_config is None, using default mllama audio config") |
|
elif isinstance(audio_config, dict): |
|
self.audio_config = Wav2Vec2BertConfig(**audio_config) |
|
elif isinstance(audio_config, Wav2Vec2BertConfig): |
|
self.audio_config = audio_config |
|
|
|
self.audio_token_index = audio_token_index |
|
|
|
if text_config is None: |
|
self.text_config = LlamaConfig() |
|
logger.info("text_config is None, using default mllama text config") |
|
elif isinstance(text_config, dict): |
|
self.text_config = LlamaConfig(**text_config) |
|
elif isinstance(text_config, LlamaConfig): |
|
self.text_config = text_config |
|
|
|
super().__init__(**kwargs) |
|
|
|
AutoConfig.register("llama3", Llama3Config) |
|
transformers.Llama3Config = Llama3Config |