File size: 16,950 Bytes
b48cee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for Mllama."""
from typing import List, Optional, Union
import numpy as np
import torch
import transformers
from transformers import AutoProcessor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, AudioKwargs
from transformers.tokenization_utils_base import (
PreTokenizedInput,
TextInput,
AudioInput,
)
# TODO: Can we do it that way or its better include as "Copied from ..."
from transformers.models.mllama.image_processing_mllama import make_list_of_images
from .audio_processing_mllama import build_audio_tokens
class MllamaImagesKwargs(ImagesKwargs, total=False):
max_image_tiles: Optional[int]
class MllamaProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: MllamaImagesKwargs
_defaults = {
"image_kwargs": {
"max_image_tiles": 4,
},
}
def get_cross_attention_token_mask(input_ids: List[int], image_token_id: int) -> List[List[int]]:
"""
Generate a cross-attention token mask for image tokens in the input sequence.
This function identifies the positions of image tokens in the input sequence and creates
a mask that defines which subsequent tokens each image token should attend to.
Args:
input_ids (List[int]): A list of token ids representing the input sequence.
image_token_id (int): The id of the token used to represent images in the sequence.
Returns:
List[List[int]]: A list of [start, end] pairs, where each pair represents the range
of tokens an image token should attend to.
Notes:
- If no image tokens are present, an empty list is returned.
- For a single image token, it attends to all subsequent tokens until the end of the sequence.
- For multiple image tokens, each attends to tokens up to the next image token or the end of the sequence.
- Consecutive image tokens are treated as a group and attend to all subsequent tokens together.
"""
image_token_locations = [i for i, token in enumerate(input_ids) if token == image_token_id]
if len(image_token_locations) == 0:
return []
# only one image present, unmask until end of sequence
if len(image_token_locations) == 1:
return [[image_token_locations[0], -1]]
vision_masks = [[loc1, loc2] for loc1, loc2 in zip(image_token_locations[:-1], image_token_locations[1:])]
# last image will attend to all subsequent text
vision_masks.append([image_token_locations[-1], len(input_ids)])
# if there are two or more consecutive vision tokens,
# they should all attend to all subsequent
# text present
last_mask_end = vision_masks[-1][1]
for vision_mask in vision_masks[::-1]:
if vision_mask[0] == vision_mask[1] - 1:
vision_mask[1] = last_mask_end
last_mask_end = vision_mask[1]
return vision_masks
def convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask: List[List[List[int]]],
num_tiles: List[List[int]],
max_num_tiles: int,
length: int,
) -> np.ndarray:
"""
Convert the cross attention mask indices to a cross attention mask 4D array.
This function takes a sparse representation of cross attention masks and converts it to a dense 4D numpy array.
The sparse representation is a nested list structure that defines attention ranges for each image in each batch item.
Args:
cross_attention_token_mask (List[List[List[int]]]): A nested list structure where:
- The outer list represents the batch dimension.
- The middle list represents different images within each batch item.
- The inner list contains pairs of integers [start, end] representing token ranges for each image.
num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item.
max_num_tiles (int): The maximum possible number of tiles.
length (int): The total sequence length of the input.
Returns:
np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles)
The array contains `1` where attention is allowed and `0` where it is not.
Note:
- Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence.
"""
batch_size = len(cross_attention_token_mask)
max_num_images = max([len(masks) for masks in cross_attention_token_mask])
cross_attention_mask = np.zeros(
shape=(batch_size, length, max_num_images, max_num_tiles),
dtype=np.int64,
)
for sample_idx, (sample_masks, sample_num_tiles) in enumerate(zip(cross_attention_token_mask, num_tiles)):
for mask_idx, (locations, mask_num_tiles) in enumerate(zip(sample_masks, sample_num_tiles)):
if len(locations) == 2:
start, end = locations
end = min(end, length)
if end == -1:
end = length
cross_attention_mask[sample_idx, start:end, mask_idx, :mask_num_tiles] = 1
return cross_attention_mask
def build_string_from_input(prompt: str, bos_token: str, image_token: str) -> str:
"""
Builds a string from the input prompt by adding `bos_token` if not already present.
Args:
prompt (`str`):
The input prompt string.
bos_token (`str`):
The beginning of sentence token to be added.
image_token (`str`):
The image token used to identify the start of an image sequence.
Returns:
str: The modified prompt string with the `bos_token` added if necessary.
Examples:
>>> build_string_from_input("Hello world", "<begin_of_text>", "<|image|>")
'<begin_of_text>Hello world'
>>> build_string_from_input("<|image|>Hello world", "<begin_of_text>", "<|image|>")
'<|image|><begin_of_text>Hello world'
>>> build_string_from_input("<begin_of_text>Hello world", "<begin_of_text>", "<|image|>")
'<begin_of_text>Hello world'
"""
if bos_token in prompt:
return prompt
num_image_tokens_on_start = 0
while prompt.startswith(image_token):
prompt = prompt[len(image_token) :]
num_image_tokens_on_start += 1
return f"{image_token * num_image_tokens_on_start}{bos_token}{prompt}"
class MllamaProcessor(ProcessorMixin):
r"""
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
```python
from transformers import MllamaProcessor
from PIL import Image
processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
processor(
images=your_pil_image,
text=["<|image|>If I had to write a haiku for this one"],
images_kwargs = {"size": {"height": 448, "width": 448}},
text_kwargs = {"padding": "right"},
common_kwargs = {"return_tensors": "pt"},
)
```
Args:
image_processor ([`MllamaImageProcessor`]):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "audio_processor", "tokenizer"]
image_processor_class = "MllamaImageProcessor"
audio_processor_class = "MllamaAudioFeatureExtractor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor, audio_processor, tokenizer):
self.image_token = "<|image|>"
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
self.audio_token = "<|audio|>"
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
self.python_token = "<|python_tag|>"
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
self.bos_token = tokenizer.bos_token
self.chat_template = tokenizer.chat_template
super().__init__(image_processor, audio_processor, tokenizer)
self.tokenizer.add_tokens([f"<|audio_{i}|>" for i in range(1, 50)])
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio: Optional[Union[AudioInput, List[AudioInput]]] = None,
videos=None,
**kwargs: Unpack[MllamaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
to the docstring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **audio_features** -- Audio features extracted using SeamlessM4TFeatureExtractor. Returned when `audio` is not `None`.
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
"""
if text is None:
raise ValueError("You must specify text.")
output_kwargs = self._merge_kwargs(
MllamaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
images_kwargs = output_kwargs["images_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
data = {}
if audio is not None:
audio_features = self.audio_processor(audio)
data.update(audio_features)
if isinstance(text, str):
text = [text]
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
n_images_in_text = [t.count(self.image_token) for t in text]
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
if audio is not None:
text = build_audio_tokens(text, audio_features, self.audio_token)
encoding = self.tokenizer(text, add_special_tokens=False, **text_kwargs)
if audio is not None:
beg_audio_id = self.tokenizer.convert_tokens_to_ids("<|audio_1|>")
idx = torch.where(encoding['input_ids'] >= beg_audio_id)
encoding['input_ids'][idx] = beg_audio_id - encoding['input_ids'][idx] - 1
data.update(encoding)
n_images_in_images = [0]
if images is not None:
images = make_list_of_images(images)
n_images_in_images = [len(sample) for sample in images]
if text is not None:
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
batch_img == 0 for batch_img in n_images_in_text
):
raise ValueError(
"If a batch of text is provided, there should be either no images or at least one image per sample"
)
if sum(n_images_in_images) != sum(n_images_in_text):
if images is None:
raise ValueError("No image were provided, but there are image tokens in the prompt")
else:
raise ValueError(
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
)
if images is not None:
image_features = self.image_processor(images, **images_kwargs)
num_tiles = image_features.pop("num_tiles")
data.update(image_features)
# Create cross attention mask
if images is not None and text is not None:
cross_attention_token_mask = [
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
]
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask,
num_tiles=num_tiles,
max_num_tiles=self.image_processor.max_image_tiles,
length=max(len(input_ids) for input_ids in encoding["input_ids"]),
)
data["cross_attention_mask"] = cross_attention_mask
return_tensors = common_kwargs.pop("return_tensors", None)
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
return batch_feature
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(tokenizer_input_names +
image_processor_input_names +
["cross_attention_mask"] +
audio_processor_input_names)
AutoProcessor.register("MllamaProcessor", MllamaProcessor)
transformers.MllamaProcessor = MllamaProcessor |