File size: 3,606 Bytes
fa04d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: google/mt5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: MT5-large_NO-idun-20epoch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MT5-large_NO-idun-20epoch

This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6704
- Rouge1: 41.2841
- Rouge2: 17.1062
- Rougel: 27.4493
- Rougelsum: 37.2798
- Gen Len: 113.9043

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 0.98  | 46   | 6.3605          | 26.7151 | 6.6971  | 17.105  | 23.7109   | 127.0    |
| No log        | 1.99  | 93   | 4.7689          | 32.3429 | 12.2149 | 20.2642 | 28.985    | 127.0    |
| No log        | 2.99  | 140  | 1.8494          | 37.8255 | 14.0518 | 22.4306 | 33.4714   | 124.9255 |
| No log        | 4.0   | 187  | 1.7294          | 39.5672 | 16.4066 | 24.4606 | 35.4055   | 121.1702 |
| No log        | 4.98  | 233  | 1.6796          | 39.5901 | 16.6044 | 25.6316 | 35.5093   | 120.5532 |
| No log        | 5.99  | 280  | 1.6557          | 39.8141 | 15.6699 | 24.8691 | 36.0578   | 123.5745 |
| No log        | 6.99  | 327  | 1.6525          | 40.0304 | 16.6229 | 25.7054 | 36.3012   | 121.0638 |
| No log        | 8.0   | 374  | 1.6484          | 40.5564 | 16.0763 | 26.0131 | 36.1736   | 119.8936 |
| No log        | 8.98  | 420  | 1.6499          | 39.9522 | 16.6648 | 26.419  | 35.9155   | 118.9468 |
| No log        | 9.99  | 467  | 1.6494          | 41.0085 | 17.1259 | 27.041  | 36.9109   | 115.8085 |
| 3.1043        | 10.99 | 514  | 1.6485          | 41.5339 | 17.5085 | 27.6923 | 37.2051   | 115.8936 |
| 3.1043        | 12.0  | 561  | 1.6488          | 40.3393 | 16.453  | 26.8152 | 36.3384   | 113.4787 |
| 3.1043        | 12.98 | 607  | 1.6485          | 42.0494 | 17.8355 | 27.9197 | 37.9283   | 115.8617 |
| 3.1043        | 13.99 | 654  | 1.6533          | 40.7634 | 16.8655 | 26.8984 | 36.5803   | 114.6809 |
| 3.1043        | 14.99 | 701  | 1.6570          | 41.6789 | 17.5072 | 27.7933 | 37.4503   | 114.1596 |
| 3.1043        | 16.0  | 748  | 1.6594          | 41.5489 | 17.2787 | 27.7975 | 37.2948   | 113.7447 |
| 3.1043        | 16.98 | 794  | 1.6643          | 41.3929 | 17.0913 | 27.4552 | 37.2221   | 113.3936 |
| 3.1043        | 17.99 | 841  | 1.6658          | 41.4336 | 16.9364 | 27.4426 | 37.1709   | 113.1915 |
| 3.1043        | 18.99 | 888  | 1.6699          | 41.5935 | 17.1928 | 27.2885 | 37.2653   | 113.6170 |
| 3.1043        | 19.68 | 920  | 1.6704          | 41.2841 | 17.1062 | 27.4493 | 37.2798   | 113.9043 |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.3.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2