AigizK commited on
Commit
3ba49f9
·
1 Parent(s): 4f0e701

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-bashkir-cv7_opt
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-bashkir-cv7_opt
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - eval_loss: 0.1331
20
+ - eval_wer: 0.1591
21
+ - eval_runtime: 283.5773
22
+ - eval_samples_per_second: 51.013
23
+ - eval_steps_per_second: 1.597
24
+ - epoch: 7.47
25
+ - step: 15000
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.0001
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 64
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 300
53
+ - num_epochs: 100
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.11.3
59
+ - Pytorch 1.10.0+cu113
60
+ - Datasets 1.16.2.dev0
61
+ - Tokenizers 0.10.3