--- library_name: transformers license: apache-2.0 base_model: arbml/whisper-small-ar tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: whisper-small-ar-ft-kws-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: Speech Commands type: speech_commands metrics: - name: Accuracy type: accuracy value: 0.5748299319727891 --- # whisper-small-ar-ft-kws-speech-commands This model is a fine-tuned version of [arbml/whisper-small-ar](https://huggingface.co/arbml/whisper-small-ar) on the Speech Commands dataset. It achieves the following results on the evaluation set: - Loss: 3.3471 - Accuracy: 0.5748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.682 | 1.0 | 166 | 0.6867 | 0.6395 | | 0.6463 | 2.0 | 332 | 0.6377 | 0.6531 | | 0.5829 | 3.0 | 498 | 0.6250 | 0.6633 | | 0.6197 | 4.0 | 664 | 0.6798 | 0.6429 | | 0.3921 | 5.0 | 830 | 0.9584 | 0.5918 | | 0.3009 | 6.0 | 996 | 0.9658 | 0.6395 | | 0.123 | 7.0 | 1162 | 1.3115 | 0.6293 | | 0.1418 | 8.0 | 1328 | 1.8621 | 0.6190 | | 0.1181 | 9.0 | 1494 | 2.2151 | 0.6020 | | 0.0014 | 10.0 | 1660 | 2.3968 | 0.6156 | | 0.0007 | 11.0 | 1826 | 2.7913 | 0.5646 | | 0.0004 | 12.0 | 1992 | 2.9198 | 0.6020 | | 0.0003 | 13.0 | 2158 | 2.9664 | 0.5850 | | 0.0002 | 14.0 | 2324 | 3.1507 | 0.5850 | | 0.0002 | 15.0 | 2490 | 3.1987 | 0.5884 | | 0.0001 | 16.0 | 2656 | 3.2650 | 0.5782 | | 0.0001 | 17.0 | 2822 | 3.3091 | 0.5714 | | 0.0002 | 18.0 | 2988 | 3.3048 | 0.5782 | | 0.0023 | 19.0 | 3154 | 3.2925 | 0.5918 | | 0.0001 | 20.0 | 3320 | 3.3471 | 0.5748 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0