File size: 1,900 Bytes
2484f43 2f00608 b9b345f 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 2484f43 2f00608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/codebert-base-mlm
datasets:
- apps
model-index:
- name: SFTCodeBertbase-mlm-APPS5k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SFTCodeBertbase-mlm-APPS5k
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the apps dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9251
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2308 | 1.61 | 500 | 2.3196 |
| 2.1364 | 3.22 | 1000 | 2.1168 |
| 1.9211 | 4.83 | 1500 | 2.0125 |
| 1.776 | 6.44 | 2000 | 1.9736 |
| 1.6872 | 8.05 | 2500 | 1.9470 |
| 1.6137 | 9.65 | 3000 | 1.9344 |
| 1.5724 | 11.26 | 3500 | 1.9288 |
| 1.533 | 12.87 | 4000 | 1.9267 |
| 1.5211 | 14.48 | 4500 | 1.9246 |
| 1.5115 | 16.09 | 5000 | 1.9251 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|