File size: 1,900 Bytes
2484f43
 
 
 
2f00608
b9b345f
2f00608
 
 
 
 
2484f43
 
2f00608
 
2484f43
2f00608
2484f43
2f00608
 
 
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
2484f43
2f00608
 
 
 
 
 
 
 
 
 
 
2484f43
2f00608
2484f43
2f00608
 
 
 
 
 
 
 
 
 
 
 
2484f43
 
2f00608
2484f43
2f00608
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/codebert-base-mlm
datasets:
- apps
model-index:
- name: SFTCodeBertbase-mlm-APPS5k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SFTCodeBertbase-mlm-APPS5k

This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the apps dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9251

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2308        | 1.61  | 500  | 2.3196          |
| 2.1364        | 3.22  | 1000 | 2.1168          |
| 1.9211        | 4.83  | 1500 | 2.0125          |
| 1.776         | 6.44  | 2000 | 1.9736          |
| 1.6872        | 8.05  | 2500 | 1.9470          |
| 1.6137        | 9.65  | 3000 | 1.9344          |
| 1.5724        | 11.26 | 3500 | 1.9288          |
| 1.533         | 12.87 | 4000 | 1.9267          |
| 1.5211        | 14.48 | 4500 | 1.9246          |
| 1.5115        | 16.09 | 5000 | 1.9251          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2