File size: 2,376 Bytes
9cd2af7
533879d
 
 
 
 
 
9cd2af7
 
533879d
 
9cd2af7
533879d
9cd2af7
533879d
 
 
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
9cd2af7
533879d
 
 
 
 
 
 
 
 
 
 
9cd2af7
533879d
9cd2af7
533879d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd2af7
 
533879d
9cd2af7
533879d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: microsoft/codebert-base
tags:
- generated_from_trainer
model-index:
- name: CBertbase-APPS10k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CBertbase-APPS10k

This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.4626        | 0.05  | 500   | 0.0390          |
| 0.0215        | 0.1   | 1000  | 0.0065          |
| 0.0096        | 0.15  | 1500  | 0.0018          |
| 0.0022        | 0.2   | 2000  | 0.0009          |
| 0.0023        | 0.25  | 2500  | 0.0003          |
| 0.0011        | 0.3   | 3000  | 0.0004          |
| 0.0011        | 0.35  | 3500  | 0.0002          |
| 0.0016        | 0.4   | 4000  | 0.0002          |
| 0.0006        | 0.45  | 4500  | 0.0001          |
| 0.0004        | 0.5   | 5000  | 0.0001          |
| 0.0002        | 0.55  | 5500  | 0.0001          |
| 0.0002        | 0.6   | 6000  | 0.0001          |
| 0.0003        | 0.65  | 6500  | 0.0001          |
| 0.0001        | 0.7   | 7000  | 0.0001          |
| 0.0001        | 0.75  | 7500  | 0.0001          |
| 0.0001        | 0.8   | 8000  | 0.0001          |
| 0.0001        | 0.85  | 8500  | 0.0001          |
| 0.0001        | 0.9   | 9000  | 0.0001          |
| 0.0001        | 0.95  | 9500  | 0.0001          |
| 0.0001        | 1.0   | 10000 | 0.0001          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2