File size: 1,570 Bytes
0215178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
tags:
- bert
- adapter-transformers
- adapterhub:nli/scitail
datasets:
- scitail
license: "apache-2.0"
---

# Adapter `bert-base-uncased-scitail_pfeiffer` for bert-base-uncased

Pfeiffer Adapter trained on SciTail.


**This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**

## Usage

First, install `adapters`:

```
pip install -U adapters
```

Now, the adapter can be loaded and activated like this:

```python
from adapters import AutoAdapterModel

model = AutoAdapterModel.from_pretrained("bert-base-uncased")
adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-scitail_pfeiffer")
model.set_active_adapters(adapter_name)
```

## Architecture & Training

- Adapter architecture: pfeiffer
- Prediction head: None
- Dataset: [SciTail](https://allenai.org/data/scitail)

## Author Information

- Author name(s): Jonas Pfeiffer
- Author email: [email protected]
- Author links: [Website](https://pfeiffer.ai), [GitHub](https://github.com/JoPfeiff), [Twitter](https://twitter.com/@PfeiffJo)



## Citation

```bibtex
@article{Pfeiffer2020AdapterFusion,
author = {Pfeiffer, Jonas and Kamath, Aishwarya and R{\"{u}}ckl{\'{e}}, Andreas and Cho, Kyunghyun and Gurevych, Iryna},
journal = {arXiv preprint},
title = {{AdapterFusion}:  Non-Destructive Task Composition for Transfer Learning},
 url       = {https://arxiv.org/pdf/2005.00247.pdf},
year = {2020}
}

```

*This adapter has been auto-imported from https://github.com/Adapter-Hub/Hub/blob/master/adapters/ukp/bert-base-uncased-scitail_pfeiffer.yaml*.