AdaptLLM commited on
Commit
cbf8e58
·
verified ·
1 Parent(s): 36890ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -3
README.md CHANGED
@@ -1,3 +1,92 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - Lin-Chen/open-llava-next-llama3-8b
7
+ tags:
8
+ - food
9
+ - recipe
10
+ ---
11
+ # Adapting Multimodal Large Language Models to Domains via Post-Training
12
+
13
+ This repo contains the **food MLLM developed from LLaVA-NeXT-Llama3-8B** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).
14
+
15
+ The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md)
16
+
17
+ We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation.
18
+ **(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.**
19
+ **(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training.
20
+ **(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.
21
+
22
+ <p align='center'>
23
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
24
+ </p>
25
+
26
+ ## How to use
27
+
28
+ ```python
29
+ from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
30
+ import torch
31
+ from PIL import Image
32
+ import requests
33
+
34
+ # Define your input image and instruction here:
35
+ ## image
36
+ url = "https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png"
37
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
38
+
39
+ instruction = "What's in the image?"
40
+
41
+ model_path='AdaptLLM/food-LLaVA-NeXT-Llama3-8B'
42
+
43
+ # =========================== Do NOT need to modify the following ===============================
44
+ # Load the processor
45
+ processor = LlavaNextProcessor.from_pretrained(model_path)
46
+
47
+ # Define image token
48
+ image_token = "<|reserved_special_token_4|>"
49
+
50
+ # Format the prompt
51
+ prompt = (
52
+ f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n"
53
+ f"You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
54
+ f"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
55
+ f"{image_token}\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
56
+ )
57
+
58
+ # Load the model
59
+ model = LlavaNextForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16, device_map="auto")
60
+
61
+ # Prepare inputs and generate output
62
+ inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
63
+ answer_start = int(inputs["input_ids"].shape[-1])
64
+ output = model.generate(**inputs, max_new_tokens=512)
65
+
66
+ # Decode predictions
67
+ pred = processor.decode(output[0][answer_start:], skip_special_tokens=True)
68
+ print(pred)
69
+ ```
70
+
71
+ ## Citation
72
+ If you find our work helpful, please cite us.
73
+
74
+ AdaMLLM
75
+ ```bibtex
76
+ @article{adamllm,
77
+ title={On Domain-Specific Post-Training for Multimodal Large Language Models},
78
+ author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
79
+ journal={arXiv preprint arXiv:2411.19930},
80
+ year={2024}
81
+ }
82
+ ```
83
+
84
+ [Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024)
85
+ ```bibtex
86
+ @article{cheng2024instruction,
87
+ title={Instruction Pre-Training: Language Models are Supervised Multitask Learners},
88
+ author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu},
89
+ journal={arXiv preprint arXiv:2406.14491},
90
+ year={2024}
91
+ }
92
+ ```