File size: 1,735 Bytes
1522602
 
 
 
fa1a67f
 
 
 
 
 
 
 
7b43273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498e0bd
7b43273
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
pipeline_tag: token-classification
tags:
- code
license: apache-2.0
datasets:
- Alex123321/english_cefr_dataset
language:
- en
metrics:
- accuracy
library_name: transformers
---
# Model Card: BERT-based CEFR Classifier

## Overview

This repository contains a model trained to predict Common European Framework of Reference (CEFR) levels for a given text using a BERT-based model architecture. The model was fine-tuned on the CEFR dataset, and the `bert-base-...` pre-trained model was used as the base.

## Model Details

- Model architecture: BERT (base model: `bert-base-...`)
- Task: CEFR level prediction for text classification
- Training dataset: CEFR dataset
- Fine-tuning: Epochs, Loss, Accuracy, etc.

## Performance

The model's performance during training is summarized below:

| Epoch | Training Loss | Validation Loss | Accuracy |
|-------|---------------|-----------------|----------|
| 1     | 1.491800      | 1.319211        | 0.420690 |
| 2     | 1.238600      | 0.864768        | 0.700447 |
| 3     | 0.813200      | 0.538081        | 0.815057 |

Additional metrics:

- Training Loss: 1.1851
- Training Runtime: 7465.51 seconds
- Training Samples per Second: 7.633
- Total Floating Point Operations: 1.499392196785152e+16

## Usage

1. Install the required libraries by running `pip install transformers`.
2. Load the trained model and use it for CEFR level prediction.


from transformers import pipeline

# Load the model
model_name = "AbdulSami/bert-base-cased-cefr"

classifier = pipeline("text-classification", model=model_name)

# Text for prediction
text = "This is a sample text for CEFR classification."

# Predict CEFR level
predictions = classifier(text)

# Print the predictions
print(predictions)