AZH04 commited on
Commit
87421ce
·
verified ·
1 Parent(s): 876749d
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.03 +/- 17.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d7fcedb7b50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d7fcedb7be0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d7fcedb7c70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d7fcedb7d00>", "_build": "<function ActorCriticPolicy._build at 0x7d7fcedb7d90>", "forward": "<function ActorCriticPolicy.forward at 0x7d7fcedb7e20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d7fcedb7eb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d7fcedb7f40>", "_predict": "<function ActorCriticPolicy._predict at 0x7d7fcedb8040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d7fcedb80d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d7fcedb8160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d7fcedb81f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d7fced48f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735308252765639283, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMbFaj7aTsg++oCMvhoLx76Yoao8VRuIvQAAAAAAAAAAM3ynvQR0qj0va5k9huZXvikdBrxiafU6AAAAAAAAAACzTpe99vxOumMCejfPgz4yW4s7uQbgjLYAAIA/AACAP80MojucbC+88LS5OyUvvTxMQaC9o/yZPQAAgD8AAIA/M/KLPSmgSbqtEE23iZl0stsNWbqGDXE2AACAPwAAgD8zCT28jyZ9upJ9MLg8VsiyCHc5uS2HSDcAAIA/AACAPxqJnr1IR7W6MG/fuj/IBbZepQA6Un/+OQAAgD8AAIA/Zp3iPHs2sroL4FW6XoI6tSVaabreU3Q5AACAPwAAgD+aSrI8KegxutC28ToXBrY1aS8hubJ6D7oAAIA/AACAPwCxL732JCG6/WmiON4LGDK1L0C7jOu7twAAgD8AAIA/HS+OPhbTHj8ycnM95TTgvpA3XT4bQPW8AAAAAAAAAAAAuuM9fvWOP4Zmuj11vue+XV9DPqzBnr0AAAAAAAAAAE2J3D32tDC6Wv+AO+/S9DP+rXg61maWugAAgD8AAIA/TZ0BvuHAgbzeXca9E7ErvqC2qj0aOQy/AACAPwAAgD9msxc9FFiFuh0Kojd6mDIzUOldO1OhuLYAAIA/AACAP7PvIT3hn8E7ifvHvZvlPr4BB3q9nSfhPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGR7cn3L3bqMAWyUTegDjAF0lEdAgrv+vyLAHnV9lChoBkdAYYtlKbrkbWgHTegDaAhHQILDdbs4T9N1fZQoaAZHQB/HS8an755oB0ucaAhHQILLrx9XtBx1fZQoaAZHQGSbzfR/mT1oB03oA2gIR0CC1Mv24/eMdX2UKGgGR0BhR2r6tT1kaAdN6ANoCEdAgtbNSydFv3V9lChoBkdAYdS+xGDtgWgHTegDaAhHQILZCcAiml91fZQoaAZHQBRDENvwVj9oB0v0aAhHQILdOelKsdV1fZQoaAZHQGVA9Mbm2b5oB03oA2gIR0CC3exVyWAxdX2UKGgGR0BofY7YChexaAdN6ANoCEdAgt+Dx0+1SnV9lChoBkdAXI/ABT4tYmgHTegDaAhHQILkpWeYlY51fZQoaAZHQGDWjhtLteFoB03oA2gIR0CDC7/3FkxzdX2UKGgGR0BjaKQiiZfEaAdN6ANoCEdAgw7I/Z/Tb3V9lChoBkdARCqraM72c2gHTQsBaAhHQIMUA4uK4x11fZQoaAZHQGDo+Lehwl1oB03oA2gIR0CDFwVv/BFedX2UKGgGR0BkJXfwZwXJaAdN6ANoCEdAgyllfzBhyHV9lChoBkdAY1+rf+CK8GgHTegDaAhHQIM0d2HLzPN1fZQoaAZHQGI5xRl6JIloB03oA2gIR0CDN+TBZZB+dX2UKGgGR0BhcAHxBmf5aAdN6ANoCEdAg0WkyLyc1HV9lChoBkdAYk1OHnEET2gHTegDaAhHQINIfViF0xN1fZQoaAZHwBQpy+6Ae7toB0vOaAhHQINWY2fkFOh1fZQoaAZHQGO94bKifxtoB03oA2gIR0CDY+a/ATIvdX2UKGgGR0BivNfVqesgaAdN6ANoCEdAg2/j9wWFe3V9lChoBkdAYUx8CxNZeWgHTegDaAhHQINyeNHYpUh1fZQoaAZHQFP+nBLwnYxoB03oA2gIR0CDdtinYQJ5dX2UKGgGR0BjJIow22ofaAdN6ANoCEdAg3dl8ohIOHV9lChoBkdAYBzmyxA0K2gHTegDaAhHQIN4nBP9DQZ1fZQoaAZHQGKtLJ0W/JxoB03oA2gIR0CDfKwX668QdX2UKGgGR0BlL90aIeo2aAdN6ANoCEdAg6En6dlNDnV9lChoBkdAY3Mcy31BdGgHTegDaAhHQIOkY3HaN+91fZQoaAZHQGBY0NjLB9FoB03oA2gIR0CDq3LWZqmCdX2UKGgGR0Bilf+6y0KJaAdN6ANoCEdAg69UsnRb8nV9lChoBkfAGDUVi4J/omgHS+NoCEdAg7uG4AjptHV9lChoBkdAYXzHKfWc0GgHTegDaAhHQIPFHvhIe5p1fZQoaAZHQEgjmwJPZZloB0vDaAhHQIPHYgieNDN1fZQoaAZHQF6x1eSjgydoB03oA2gIR0CDzzA8B+4LdX2UKGgGR0BMXjFQ2uPnaAdL92gIR0CD1z8qFyq/dX2UKGgGR0BmmfEIgNgCaAdN6ANoCEdAg92V2q1gIHV9lChoBkdAX1x8neBQN2gHTegDaAhHQIPfeA7Pppx1fZQoaAZHQGUK2bgCOm1oB03oA2gIR0CD6HyrgflqdX2UKGgGR0BmxHEOy3TeaAdN6ANoCEdAg/Q3XZoPCnV9lChoBkdAYhgkv9LpR2gHTegDaAhHQIP/X1FpfyB1fZQoaAZHQGVuFt8/lhhoB03oA2gIR0CEAcAWi1zAdX2UKGgGR0BhVisr/bTMaAdN6ANoCEdAhAXX18LKFXV9lChoBkdAYyyTRIBikWgHTegDaAhHQIQGVfmcOLB1fZQoaAZHQGY3Kcd5prVoB03oA2gIR0CEB3GQSzw+dX2UKGgGR0BlUaGgzxgBaAdN6ANoCEdAhAtDx9XtB3V9lChoBkdAYZf8WKuSwGgHTegDaAhHQIQ4KEcsDnx1fZQoaAZHQGY/WGIsRQJoB03oA2gIR0CEPdmbsniOdX2UKGgGR0BmHzcIqsltaAdN6ANoCEdAhFNRZMcp9nV9lChoBkdAY7KgezUqhGgHTegDaAhHQIRVtH8TBZZ1fZQoaAZHQGdoqHoHLRtoB03oA2gIR0CEXckrwvxpdX2UKGgGR0BjROtU4rBkaAdN6ANoCEdAhGXAqmTC+HV9lChoBkdAM1qE8JUo8mgHS9BoCEdAhGpxLK3d9HV9lChoBkdAZX5yauwHJWgHTegDaAhHQIRsDWK/Efl1fZQoaAZHQGJKa9CeEqVoB03oA2gIR0CEbb8UmD15dX2UKGgGR0BnrweDFqBVaAdN6ANoCEdAhHevrnkkr3V9lChoBkdAZRbUKiO/+WgHTegDaAhHQISHvfAKv3d1fZQoaAZHQFI3su3+dbxoB0voaAhHQISJvgUDdQB1fZQoaAZHQFwmzjWCmMxoB03oA2gIR0CElDS+g13udX2UKGgGR0Bjii5VfeDWaAdN6ANoCEdAhJaRFRYRunV9lChoBkdAYA2W1MM7VGgHTegDaAhHQISasdT5wfh1fZQoaAZHQGOG/OlfqotoB03oA2gIR0CEmzF3pwCKdX2UKGgGR0BiPWACnxaxaAdN6ANoCEdAhJxReb/ff3V9lChoBkdAYJ8Q7LdN4GgHTegDaAhHQISgO7Wd3B51fZQoaAZHQFsUU5dWyTpoB03oA2gIR0CEpc4Ia99MdX2UKGgGR0Bk+Ztix3V1aAdN6ANoCEdAhM2DZtelbnV9lChoBkdARtS7iADq4mgHS9hoCEdAhOl0gbIcR3V9lChoBkdAYE/toBaLXWgHTegDaAhHQITruumrKeV1fZQoaAZHQGKUku6ErXloB03oA2gIR0CE9w66J66bdX2UKGgGR0BhbQlKK509aAdN6ANoCEdAhP9sir1dxHV9lChoBkdAZxGdCE6DG2gHTegDaAhHQIUEAyZa3Zx1fZQoaAZHQGWL4nv2GqRoB03oA2gIR0CFB3vqkdmydX2UKGgGR0BltJeqrBCVaAdN6ANoCEdAhRBldLQHA3V9lChoBkdAZp0JdjXnQ2gHTegDaAhHQIUcW7UXpGF1fZQoaAZHQGIzis4ku6FoB03oA2gIR0CFHeRGMGX5dX2UKGgGR0BnnQWnCO3laAdN6ANoCEdAhSd1YZEUkHV9lChoBkdASrf6XSjQA2gHS9toCEdAhSetX5nDi3V9lChoBkdAYaJkbxVhkWgHTegDaAhHQIUptnIyTIN1fZQoaAZHQGWqYt6HCXRoB03oA2gIR0CFLYZ7XxvvdX2UKGgGR0BhGdfkWAPNaAdN6ANoCEdAhS4MLncL0HV9lChoBkdAYeFAWSEDhmgHTegDaAhHQIUvIhfShJ11fZQoaAZHQGZdmJWNm19oB03oA2gIR0CFMtPrv9cbdX2UKGgGR0A9yWLgn+hoaAdLpmgIR0CFNoXizcASdX2UKGgGR0BnR7VhCtzTaAdN6ANoCEdAhTgC/O+qR3V9lChoBkdAUAWQFLWZqmgHTQEBaAhHQIVnuii7Ci11fZQoaAZHQGRiT1kDp1RoB03oA2gIR0CFe+n889wFdX2UKGgGR0BhNzB0p3HJaAdN6ANoCEdAhX1xsVLzw3V9lChoBkdAXU7gUDdP+GgHTegDaAhHQIWFfA0sOG11fZQoaAZHQF6Gu2Zy+6BoB03oA2gIR0CFjV8MuvlmdX2UKGgGR0BkPqjJuEVWaAdN6ANoCEdAhZG5fD1oQHV9lChoBkdAYjuvA44p+mgHTegDaAhHQIWU6ApazNV1fZQoaAZHQGTZK6FuejFoB03oA2gIR0CFqthvze41dX2UKGgGR0BisKNQ0oBraAdN6ANoCEdAhaywD3dsSHV9lChoBkdAYtMbd8Aq/mgHTegDaAhHQIW7cw5/9YR1fZQoaAZHQGJbGXgLqlhoB03oA2gIR0CFxaAQxvehdX2UKGgGR0BilymO2iL3aAdN6ANoCEdAhcaC3XqZ+nV9lChoBkdAXqm59Vmz0GgHTegDaAhHQIXIIJZ4fOl1fZQoaAZHQGNTK4QSSNhoB03oA2gIR0CFzMduHerNdX2UKGgGR0BjeyAYpDu0aAdN6ANoCEdAhdFCa7VawHV9lChoBkdAYFXv99+gDmgHTegDaAhHQIXTE1ZTyax1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 152, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8916887185bdd866afac2a1d5d955a14d12d28f732e5cf82bcd76263952a68e6
3
+ size 148006
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d7fcedb7b50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d7fcedb7be0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d7fcedb7c70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d7fcedb7d00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d7fcedb7d90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d7fcedb7e20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d7fcedb7eb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d7fcedb7f40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d7fcedb8040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d7fcedb80d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d7fcedb8160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d7fcedb81f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d7fced48f40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 507904,
25
+ "_total_timesteps": 500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1735308252765639283,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMbFaj7aTsg++oCMvhoLx76Yoao8VRuIvQAAAAAAAAAAM3ynvQR0qj0va5k9huZXvikdBrxiafU6AAAAAAAAAACzTpe99vxOumMCejfPgz4yW4s7uQbgjLYAAIA/AACAP80MojucbC+88LS5OyUvvTxMQaC9o/yZPQAAgD8AAIA/M/KLPSmgSbqtEE23iZl0stsNWbqGDXE2AACAPwAAgD8zCT28jyZ9upJ9MLg8VsiyCHc5uS2HSDcAAIA/AACAPxqJnr1IR7W6MG/fuj/IBbZepQA6Un/+OQAAgD8AAIA/Zp3iPHs2sroL4FW6XoI6tSVaabreU3Q5AACAPwAAgD+aSrI8KegxutC28ToXBrY1aS8hubJ6D7oAAIA/AACAPwCxL732JCG6/WmiON4LGDK1L0C7jOu7twAAgD8AAIA/HS+OPhbTHj8ycnM95TTgvpA3XT4bQPW8AAAAAAAAAAAAuuM9fvWOP4Zmuj11vue+XV9DPqzBnr0AAAAAAAAAAE2J3D32tDC6Wv+AO+/S9DP+rXg61maWugAAgD8AAIA/TZ0BvuHAgbzeXca9E7ErvqC2qj0aOQy/AACAPwAAgD9msxc9FFiFuh0Kojd6mDIzUOldO1OhuLYAAIA/AACAP7PvIT3hn8E7ifvHvZvlPr4BB3q9nSfhPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGR7cn3L3bqMAWyUTegDjAF0lEdAgrv+vyLAHnV9lChoBkdAYYtlKbrkbWgHTegDaAhHQILDdbs4T9N1fZQoaAZHQB/HS8an755oB0ucaAhHQILLrx9XtBx1fZQoaAZHQGSbzfR/mT1oB03oA2gIR0CC1Mv24/eMdX2UKGgGR0BhR2r6tT1kaAdN6ANoCEdAgtbNSydFv3V9lChoBkdAYdS+xGDtgWgHTegDaAhHQILZCcAiml91fZQoaAZHQBRDENvwVj9oB0v0aAhHQILdOelKsdV1fZQoaAZHQGVA9Mbm2b5oB03oA2gIR0CC3exVyWAxdX2UKGgGR0BofY7YChexaAdN6ANoCEdAgt+Dx0+1SnV9lChoBkdAXI/ABT4tYmgHTegDaAhHQILkpWeYlY51fZQoaAZHQGDWjhtLteFoB03oA2gIR0CDC7/3FkxzdX2UKGgGR0BjaKQiiZfEaAdN6ANoCEdAgw7I/Z/Tb3V9lChoBkdARCqraM72c2gHTQsBaAhHQIMUA4uK4x11fZQoaAZHQGDo+Lehwl1oB03oA2gIR0CDFwVv/BFedX2UKGgGR0BkJXfwZwXJaAdN6ANoCEdAgyllfzBhyHV9lChoBkdAY1+rf+CK8GgHTegDaAhHQIM0d2HLzPN1fZQoaAZHQGI5xRl6JIloB03oA2gIR0CDN+TBZZB+dX2UKGgGR0BhcAHxBmf5aAdN6ANoCEdAg0WkyLyc1HV9lChoBkdAYk1OHnEET2gHTegDaAhHQINIfViF0xN1fZQoaAZHwBQpy+6Ae7toB0vOaAhHQINWY2fkFOh1fZQoaAZHQGO94bKifxtoB03oA2gIR0CDY+a/ATIvdX2UKGgGR0BivNfVqesgaAdN6ANoCEdAg2/j9wWFe3V9lChoBkdAYUx8CxNZeWgHTegDaAhHQINyeNHYpUh1fZQoaAZHQFP+nBLwnYxoB03oA2gIR0CDdtinYQJ5dX2UKGgGR0BjJIow22ofaAdN6ANoCEdAg3dl8ohIOHV9lChoBkdAYBzmyxA0K2gHTegDaAhHQIN4nBP9DQZ1fZQoaAZHQGKtLJ0W/JxoB03oA2gIR0CDfKwX668QdX2UKGgGR0BlL90aIeo2aAdN6ANoCEdAg6En6dlNDnV9lChoBkdAY3Mcy31BdGgHTegDaAhHQIOkY3HaN+91fZQoaAZHQGBY0NjLB9FoB03oA2gIR0CDq3LWZqmCdX2UKGgGR0Bilf+6y0KJaAdN6ANoCEdAg69UsnRb8nV9lChoBkfAGDUVi4J/omgHS+NoCEdAg7uG4AjptHV9lChoBkdAYXzHKfWc0GgHTegDaAhHQIPFHvhIe5p1fZQoaAZHQEgjmwJPZZloB0vDaAhHQIPHYgieNDN1fZQoaAZHQF6x1eSjgydoB03oA2gIR0CDzzA8B+4LdX2UKGgGR0BMXjFQ2uPnaAdL92gIR0CD1z8qFyq/dX2UKGgGR0BmmfEIgNgCaAdN6ANoCEdAg92V2q1gIHV9lChoBkdAX1x8neBQN2gHTegDaAhHQIPfeA7Pppx1fZQoaAZHQGUK2bgCOm1oB03oA2gIR0CD6HyrgflqdX2UKGgGR0BmxHEOy3TeaAdN6ANoCEdAg/Q3XZoPCnV9lChoBkdAYhgkv9LpR2gHTegDaAhHQIP/X1FpfyB1fZQoaAZHQGVuFt8/lhhoB03oA2gIR0CEAcAWi1zAdX2UKGgGR0BhVisr/bTMaAdN6ANoCEdAhAXX18LKFXV9lChoBkdAYyyTRIBikWgHTegDaAhHQIQGVfmcOLB1fZQoaAZHQGY3Kcd5prVoB03oA2gIR0CEB3GQSzw+dX2UKGgGR0BlUaGgzxgBaAdN6ANoCEdAhAtDx9XtB3V9lChoBkdAYZf8WKuSwGgHTegDaAhHQIQ4KEcsDnx1fZQoaAZHQGY/WGIsRQJoB03oA2gIR0CEPdmbsniOdX2UKGgGR0BmHzcIqsltaAdN6ANoCEdAhFNRZMcp9nV9lChoBkdAY7KgezUqhGgHTegDaAhHQIRVtH8TBZZ1fZQoaAZHQGdoqHoHLRtoB03oA2gIR0CEXckrwvxpdX2UKGgGR0BjROtU4rBkaAdN6ANoCEdAhGXAqmTC+HV9lChoBkdAM1qE8JUo8mgHS9BoCEdAhGpxLK3d9HV9lChoBkdAZX5yauwHJWgHTegDaAhHQIRsDWK/Efl1fZQoaAZHQGJKa9CeEqVoB03oA2gIR0CEbb8UmD15dX2UKGgGR0BnrweDFqBVaAdN6ANoCEdAhHevrnkkr3V9lChoBkdAZRbUKiO/+WgHTegDaAhHQISHvfAKv3d1fZQoaAZHQFI3su3+dbxoB0voaAhHQISJvgUDdQB1fZQoaAZHQFwmzjWCmMxoB03oA2gIR0CElDS+g13udX2UKGgGR0Bjii5VfeDWaAdN6ANoCEdAhJaRFRYRunV9lChoBkdAYA2W1MM7VGgHTegDaAhHQISasdT5wfh1fZQoaAZHQGOG/OlfqotoB03oA2gIR0CEmzF3pwCKdX2UKGgGR0BiPWACnxaxaAdN6ANoCEdAhJxReb/ff3V9lChoBkdAYJ8Q7LdN4GgHTegDaAhHQISgO7Wd3B51fZQoaAZHQFsUU5dWyTpoB03oA2gIR0CEpc4Ia99MdX2UKGgGR0Bk+Ztix3V1aAdN6ANoCEdAhM2DZtelbnV9lChoBkdARtS7iADq4mgHS9hoCEdAhOl0gbIcR3V9lChoBkdAYE/toBaLXWgHTegDaAhHQITruumrKeV1fZQoaAZHQGKUku6ErXloB03oA2gIR0CE9w66J66bdX2UKGgGR0BhbQlKK509aAdN6ANoCEdAhP9sir1dxHV9lChoBkdAZxGdCE6DG2gHTegDaAhHQIUEAyZa3Zx1fZQoaAZHQGWL4nv2GqRoB03oA2gIR0CFB3vqkdmydX2UKGgGR0BltJeqrBCVaAdN6ANoCEdAhRBldLQHA3V9lChoBkdAZp0JdjXnQ2gHTegDaAhHQIUcW7UXpGF1fZQoaAZHQGIzis4ku6FoB03oA2gIR0CFHeRGMGX5dX2UKGgGR0BnnQWnCO3laAdN6ANoCEdAhSd1YZEUkHV9lChoBkdASrf6XSjQA2gHS9toCEdAhSetX5nDi3V9lChoBkdAYaJkbxVhkWgHTegDaAhHQIUptnIyTIN1fZQoaAZHQGWqYt6HCXRoB03oA2gIR0CFLYZ7XxvvdX2UKGgGR0BhGdfkWAPNaAdN6ANoCEdAhS4MLncL0HV9lChoBkdAYeFAWSEDhmgHTegDaAhHQIUvIhfShJ11fZQoaAZHQGZdmJWNm19oB03oA2gIR0CFMtPrv9cbdX2UKGgGR0A9yWLgn+hoaAdLpmgIR0CFNoXizcASdX2UKGgGR0BnR7VhCtzTaAdN6ANoCEdAhTgC/O+qR3V9lChoBkdAUAWQFLWZqmgHTQEBaAhHQIVnuii7Ci11fZQoaAZHQGRiT1kDp1RoB03oA2gIR0CFe+n889wFdX2UKGgGR0BhNzB0p3HJaAdN6ANoCEdAhX1xsVLzw3V9lChoBkdAXU7gUDdP+GgHTegDaAhHQIWFfA0sOG11fZQoaAZHQF6Gu2Zy+6BoB03oA2gIR0CFjV8MuvlmdX2UKGgGR0BkPqjJuEVWaAdN6ANoCEdAhZG5fD1oQHV9lChoBkdAYjuvA44p+mgHTegDaAhHQIWU6ApazNV1fZQoaAZHQGTZK6FuejFoB03oA2gIR0CFqthvze41dX2UKGgGR0BisKNQ0oBraAdN6ANoCEdAhaywD3dsSHV9lChoBkdAYtMbd8Aq/mgHTegDaAhHQIW7cw5/9YR1fZQoaAZHQGJbGXgLqlhoB03oA2gIR0CFxaAQxvehdX2UKGgGR0BilymO2iL3aAdN6ANoCEdAhcaC3XqZ+nV9lChoBkdAXqm59Vmz0GgHTegDaAhHQIXIIJZ4fOl1fZQoaAZHQGNTK4QSSNhoB03oA2gIR0CFzMduHerNdX2UKGgGR0BjeyAYpDu0aAdN6ANoCEdAhdFCa7VawHV9lChoBkdAYFXv99+gDmgHTegDaAhHQIXTE1ZTyax1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 152,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d8d9c291dd5a88806d9fa8b4aeb82577be5f8eae8e69ecb0a5a89516eaf4a13
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae478874a7b50d336af3c2cf99b263b684bb2b4da98067924e01b3043722f8c
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.02726279999996, "std_reward": 17.722640874752237, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-27T14:20:32.767534"}