--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-olid results: [] --- # distilbert-olid This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9021 - Accuracy: 0.8148 - F1: 0.8142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3705 | 1.0 | 884 | 0.3512 | 0.8320 | 0.8320 | | 0.3255 | 2.0 | 1768 | 0.3575 | 0.8405 | 0.8397 | | 0.237 | 3.0 | 2652 | 0.4100 | 0.8331 | 0.8331 | | 0.1908 | 4.0 | 3536 | 0.6351 | 0.8374 | 0.8369 | | 0.1039 | 5.0 | 4420 | 0.9021 | 0.8148 | 0.8142 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2